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0. Introduction

,',c)nsider a first order system of partial differential equations

au m 3
L4X't.) -m+ A- + B F(x,t)

t =x 1  J=2 3

wth ,n!tant coefficient,. Here u(x,t) = ( x,t),...,u ( x,t))' is a

-", ' <'uiti~n -M'" the it'.; ,r,..b c' (xt.t) and A,B. are

--r, ,rquare matrices 'I rder r. We assume that (0.1) is strictly hyper-

i.u for all real j : , , =_ = w ) with lul # 0, the

i"..ue of the matrix iAw + iBw..), Biw_ = B jWj, are imaginary and

.t r:t. We assume that A is sinular and has the form

O 0 a f 0

i < 0 
A 0
1 ,where to 1aJA0

fIhe ector u(x,t) is then partitioned as ( u N, U)'

gtv d' -r by the half space : x ;0, - . 2,,..,rr by_

.i, m- diwensional real spact The ".ect:rs x \x-,...,x and by R the

, r. e t 0.

.F study the mixed initiai b-)undary value problem

A) 1,u = F iii I ,'

- )(B ) u (x ,O ) z ' x ) in 0
0

(() 3u40,x_,t ) = g x_, . in P .k

e b,,.ndiary operator ', i.; i c-instant 41-.),n matrix sush that

...e ,n henceforth we use the trinspositi rn symbol in the following sense:

i: hB,C,. . . are ;ectors or matrices then A,B,C,...' replaces the usual

-- - --- . . a " . . . I "II l . . m _ -* I .. . -
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(0.3) S(Ker A) 0

For a domain G define

IlulriG = e-t/2u 1  G

,': .sider the problem (0.2) with f = 0. The main objective in study of this

problem is to prove that under the uniform Kreiss condition the a priori

estimate

0) iu(x,t) 2  + + 1 Au(0,x ,t) 112
T1 ,RxR TJR_AR

K(11 g(x ,t l 2 + ;IF(xt) 2 R +-( ~x,~ + + n R0R )
n ,R xR

holds for any n>O.

Throughout this paper we denote by K as well as by 6 different positive

constants. The above problem was completely investigated by Majda and Osher

in [i]. Our work consists of two parts. In Part I we use some concepts from

the theory of A-matrices partially introduced by Gochberg and Rodman in [4]

to reprove the above estimate. The methods of X-matrices theory enable us to

simpiify the proof and to remove some of the assumption in [i].

In Part II the same methods are used in investigation of stabiiity of

so-called Burstein difference approximtion appiied to the problem (0.2).

We restrict ourselves to the two space-dimensional case and additional assump-
tion that the determinant IAw1 +Bw2l is identically zero for any )i, and

This and other technical assumptions cf this work are satisfied, for examp-e,

in the case of the acoustic equations, It should be noted that Gustafsson,

Kreiss and Sundstrom developed in [i] a stability theory of general difference

approximations for initial boundary value problems in the case of one-spare

dimension and non-characteristic boundary. As far as we know, there is n., such

thcory for several dimensional case even for non-characteristic boundary.

There are two main difficulties in our investigation. The first one conz;its o)f

searching for the block structure of some A-matrix dependinr on parameter,;

rear a point where this matrix is non-regular. Ouch situation occurs because

the boundary is characteristic. The second one is construction of the Kreiss



symmetrizer for a block which is a perturbation of a single Jordan cell. For

general differential case such a synmetrizer was built by Kreiss in [2]. But

,or difference approximations this problem was resolved in [3] only in the one

dimensional case for strictly nondissipative schemes. However, when the several

dimensional case is considered, such a problem arises aiso for dissipative

schemes. Being concerned with specific differeance approximation we are able to

provide a detailed analysis of stability. But the same methods may be applied

to other difference approximations, the ampiification matrix of which is a poly-

nomial of some linear combination of the matrices A and B from (O.1).

.. !

* C.
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Part 1. Differentiai Equation

Definitions, Assumptions, Statements of Results.

uapply to the probLem (0.2) with f = 0 a Fourier transform in x -With dua-

-e E 1 and Lap:;ie 'aKomin t with duali varable s +-ip

J 3 :id F~ < ~ o D:r the transforms of u and F by u and F. Then

ob emn(2 is oo,-n e r ed t-

d

(B) zSu(Q)

:7 C (0.4) Is e,,,. *.-e!-t to an estimate

- 2 e: ' Q( 2  ~ j2g + iIF(x )j+
I Au'O ' +^ es ,

-7 .. he symbol from L,u and 6 and replacos

U i oe smbolB inthe nor io-n .f he mccc.

ferec~r i <i.7 connected A -ori IA \,s,s

... j.',i- -~has the form-

U j wi -h

]i s-b 's)IIA-A A

~ ) i, a jeft ecp eec- t aa arld isz a inea, fan-tio n of s
ro4tit.h-~ ivh: t 1i:r real s and a nd i~r:ainity u,

!.e 'leterminant L(r 5 >e'i lhetr re alsco b is is rea! fa-r rc-a.

.A.h-out lo)ss of' generality, we qmy .-:--ume that b Is) = 0 (one shojid -ep.ar -

the parameter s by b I)) For s =0 the highest- tern, n

- ~..We cons3ider -w.i a .

i-C the polynomial 1, ,.,0) varn:she-, "or any and w.

4IN



:its t desit-nated in [I] the cas7e of bounded eignevabues.

:150-, _': thle pn) 1 yn omi at 1 Lw0) 1does not vanish ietclyacco,!,ntn t-,

f)r, any value of wCRnis i C

en- e, b- 7e tie sp c 'n i,,ei L -k !n

-,L )rLO fixcol a, ±±ni :,,iplex

7vie make shie second

A ssuption 1.9'. d im, V ilfo any comnplex aw 0
Under ar mzrt -a oil W'0tc n ausc o 3the foll owin :t-mpc rt ant

ut~~~~~ 0e ther 'S 9fo soe :c_ 1.m*

bouncda'w -ondi Zion I I. B uhnha the proud ~em is; pr-pet, pl iv, ie.

2 cd, ho nethe n-at rid-es A anda a ztt syre :<s'.p" ,,

t e >s ssa:y f o r ho we -poo--ed ne> 1: Ie ii e:u,

;1 ofor s yimet{'wtc 7 el:h bcna': rt

ems t<pl ±eoav Satitfied.

rid a'e Cu1.1 L1 ed.

.may e so r±k, -', 1n In i A "I l nci F fo: aea r-e Syr.mret:a(rl

ilO e 0l: 7 11 ke'"e ,t ir U_ ll~ 'I,; 1. s r ct I-u f te tlie ;70 ,

,1!:ii ''' ea] & li I r7 0- -i: 1t> haIve no cnc kei-nod, then

Iii eton,! a""rUitptio 0 t-1 15 0Ulli C .

r tre1 1. in fh 4'n~r ;)I

& . ''i': . TI w p'u: L' r. e' (pE' 1 R n eigot~n! in n 'r ) fe
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problem (1.1) corresponding to the eigenvalue s, with Res>O if'

of the homogeneous equation:

A d- + s.*p + iB(w)Wp = 0
dx I

with boundary condition

.5) Sin(O) 0

t may be shown as in [2] that for Res>0 the characteristic equat ;n

_L.6b) IL(X,w,s)l = 0

has precisely k-1 eigenvalues X with ReA < 0 and n-, ones with eO

tLthough the matrix A is singular, the determinant iL( ,,,s~I does n;.:

vanish for all X if s - 0. Therefore if Res>O, we may apply t7 the equatiio_

(l.4) the elementary theory of' ordinary linear differential equations. Thus,

f":..,%t L"r, (1.4) has exactly Z-1 linearly independent solutions

.. 7) 01(x,u,s), p2 x,u,s) ...2' Z 1 (x,,s) in L C' ).

Let these solutions be ortnonormalized at x =0. enote

N S .N s kp 4 S ,p2 ,... p _I x:.

Then the uniform Kreiss condition (UKC) is stated:

UKC ) There exists a constant 6 , 0 such that I N(,s)l 6 f r any s w.

zies -0.
(1) (2) (n) - (2) 3)

Given a vector (p = 2 p ) we define Q (p ,= ,p..,

--om (0.3) follows that Sqp actually depends on p. 6rthcnormaiizing the 'e:-

t'>5 t.j0,C,) instead of (Pi 0,,) we define

L.9) t(o,sdfe Sunfr Krei ... dn a l]x= .

'-hen the modified 
uniform 

Kreiss 
condition 

, dencted 
as { K I s f . m i t 4
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(VKC- There exists a constant 6-0 such that Ri(w,s)I 6 for any (w,s) with

Res-0.

a~da and Osher in [i used the condition (UKC) and called it a uniform

Kreis condition.

Let us denote r = (w,s), w' w/IAfs' = s/I, ' = s).

(1.11) 0(c') = {tif'-rH<, and w' real)

be a conical neighbourhood of the point =0 (w ,s) with real w6. It S

be shown in Section 3 for the case of bounded eigenvalues that for any

with Res' > 0 including s' = 0 there is some neighbourhood Q(4') such
00

tfat the solutions in (1.7) are defined for any 4EQ(C') with Res>O and the

vectors p.'(,C) depero )n C' only, are continuous functions of 4' at the

noint r and are inilependent at this point. Moreover, the shortened vec-

tors w(J, ) are also independent. Therefore the determinants JN(4)I and
'0

!N(c,) depend actually on ' and are continuous at the point

i.':r a fixed w0 so with Res 0>0 is an eigenvalue of the problem (i.i) iff

0 
0

9. I I 0I 0

in [9] we iefine w,.t ' hes O = 0 as a generalized eigenvalue iff (-.I-

holds for some point and 0.

"n the case of bounded e genvalues we may replace the matrix N(C) by Nk

'-n rhe definition of the eigvenvalues and generalized eigenvalues. The conditions

'ThYV and (V,,, are therefore equivalent and may be formulated:

.12) The problem (1.1) has no eigcnvalues or generalized eig,,envalues s with Res , .

,,n:'rturiately, in the case o unboundee eigenvaLues the above conditions are n.)>

eqoiva~ent. For r' = (w',0) the vectors p j(0,4') are, knen .y. ioe~ily,

c-,ntinuous at the p oint [. However, we shall see in fection 4 thai. the

shortened vectors i (0, ') are still continuous. Therefore it is possible to

,efine the generalized eigenvalues by using (1.11), and (UKC) may be formu~ated

... .. -
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as in (1.12). The main result of this work is

Theorem 1. The condition (UC) is necessary and sufficient for the estimate

1.2) tu hoJd.

Thas we extend theorem 1 in [i] also to non-symmetric systems at least in

the case of a half-space and constant coefficients. For the case of unbounded

eigenvalue, assumptior 1.6 in [1] may be dismissed and for bounded eigen-

values assumption 1.10 in [I] about singular block structure is replaced

by the natural assumption 1.1 and additional necessary assumption 1.2 for non-

symmetric systems.

-n [i] there is given also a counter-example (Bi, p. 631) of a problem (0.2)

with non-symmetric matrices A and B such that (UKC) is satisfied, but

estimate (0.4) is false. This is the case of bounded eigenvalues, but the

condition (UKC) is not fulfilled. The reason of this seeming contradiction lies

in the fact that the matrices A and B have common kernel and do not satis-

fy the assumption 1.2.

We summarize now the contents of this part. it consists of four sections.

in Section 2 we introduce some concepts from the theory of A-matrices and pro e

some lemmas which are useful also in the Part II.

In Section 3 the case of bounded eigenvalues is investigated and in the same

time the above mentioned theorem 3.5 is proved.

'n Section 4 we finally consider the easiest case of unbounded eigenvalues.

% -C -



2. A-matrices

2.1. Generalized eigenvectors, spectral pairs and invariant subspaces.

Let L(X) be a square matrix of order n with entries, which are holomorphic

functions of A in a domain 9cC. Such matrix is also called a A-matrix. The

point A EC2 is an eigenvalue of L(X) if IL( 0 )I = 0. The set of all eigenvalues

of L(X) is called the spectrum of L(X) and denoted by a(L). The matrix L(X)

is regular if IL(A)I / 0. Then for any compact Dc2 the set a(L)fD is finite.

We say that L(A) is singular of order one if IL(A)I 5 0 and rank L(A) = n-l

for some AEQ. The points AEI, where the rank L(X) < n-l, form so called dis-

crete spectrum of L(A), which is denoted by ad(L). It is obvious that for

any Dc the set o (L)lD is finite.

Let O Eo(L). There exists holomorphic vector function O(A) with p( 0) 7 0

such that the function L(A)(P(X) vanishes at the point A0* Following Gochberg

and Rodman in [4] we call (P(A) a root function corresponding to X The order

of X>O as a -erc of L(A)(o(X) is called the multiplicity of 2(A) and the vector

O( o ) = (p(A 0 ) - an eigenvectcr of T,(A) corresponding to A0 . If O() is a root

function of L(A) of multiplicity q corresponding to A0 and

.(X) = Q c (-Ao)
j=O0

then the chain of vectors .p ( ,O  ,...,'p is a Jordan chain of L(X) cor-

responding to the eigenvalue A0, and the vectors (p) , . , (q-l) are called

;-eneralized eigenvectorn corresponding to A0 .

A root function QO(A) is called a singular root function of a singular A-matrix

L() if L( ) 0(A) - 0. 'The vector p0 (P), when not zero, is an eigenvector of

L(A) and is called a singular eigenvector of L(A) corresponding to A. If L(A)

't o)f order ,to my )- 2 c -Icrr exactly one sin.,.ilar

IgenvecLor. Ai eigenvector corresponding to a point A Ed(L) is called reg-

ular if it is not singular for the same A Similarly, a root function P(X)

: ,)rrezponding to such point A0 is regular if the eigenvector %p( 0 ) is regular.

v r-
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Let Ol (A) be a root function of L(A) of multiplicity q correspondin, t,)

an eigenvalue A0 . We denote by X1(A0) = (pO , ,. A ) a r-trix

formed by the column-vectors of the corresponding Jordan chain and by (A

Jordan cell of the size q with the eigenvalue X0 .

If I(),p02 (A),...,LPk(A) are some root functions corresponding to XA. we forn

a matrix

X(A O ) = (X1 (A0 ), X2 ( 0 ),...,xk(AO))

and a corresponding Jordan matrix

J(A O ) = diag(J (X ),J2 (AX), J (A))0 1l.0'2 0'" k 0

where diag(J,'J2' 'J ) denotes the square block diagonal matrix whose main

diagonal is given by Ji,3 2 ,.. .,Jk' The sequence formed by the '.1vimnL oi X(

will be called a Jordan sequence corresponding to A0 , and the pair

(X( 0),JU ))is a spectral pair corresponding to X0 , In this wurk we :ien

identify a matrix X with the sequence or even the set (t its coiumn-vect,rs.

Therefore we shall call also the matrix X(A ) a Jordan se0.denc e. The space
(0) (0) (0)e

spanned by the eigenvectors (c (A ) (A ) is called the
0 0 ' (A 0)

Cegenspace of the Jordan sequence X(A O ) and any vector belonging t th:i;

space is called an eigenvector of X(AO) If the dimension of the above ea eri-
0*

..~ae isk and any eigenvector of X(A ) is not singular, then the sequence

X( 0) is called regular. Fur a reguiar matrix L(M) we replace the singular

eilrenvector in the above del'inltiun by 0. : ,,,,. ,0 are different

eigenvalues of L(A) and (X(A ),J(A,)), iij.t, are the t'i:tpnding spectti,.

pairs, we denote
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X = (X(A ),...,X(At)), J = diag(JA . ,,JlAt).

Then the matrix X is called a Jordan sequence of L(A) ir x,. and the pair iX,J)

i3 the spectral pair of' L(A) in Q. The JKrdan sequence X is called regulai

if X(A3) are regular for all ifjit. A vector (P
(0 ) is -alled an eigenvect.,r f

X i t (0 ) is an eigenvect)r of' some X(A j), ilJ_-t.

Any A-matrix L(X) is equivalent in ii to a didgonal matrix

(2.1) S(A)L(A)R(A) = D(A) = diag(di(A),d2(A),...,dslA),O,. .. )

where S(A), R(A) and D( ' are hulomorphic in Q, the matri~ez s(A) and H( ,,

are invertible and di+l(X)/di(A) are holomirphic in Q for l-i.s Lee [ ] io

detail). If L(A) is regular, s = n, and for singular A-matrix ,f order ne

i = n 1, where n is the order of the square matrix L(A). Let Q0 be i t. indi

domain with Q OcW. Denote by AA, t  all the dit'f'erent r t: ,

It may be assumed that d (A) ha, trie trm

ii
q i q ., )q it

(2.2) di(A) = (A-A) ( A,) .. -A .

where the integers qij form for each I.j~t a non-decreasing sequence. !f
s

is regular, the number q = q is a multiplicity of' the elgenva u k 1110,
i=lj

is equal to a multiplicity of X. as a root oI the ,haracteristic eqai 0,.

IL(A)I = 0. Taking rPi (A) equal to the i-th c< bumn .i R(A we -ncude lhat

(P ) is a root function of multiplicity q correspcndinr to e i en, ,e

1<J.t. The root functions 1 (),(A),. ., )enerate r an eieivi

-.. . * - , - .. _ ,-. . , . . u '., . , .
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a spectral pair (X(Xj),J(Xj)), which is called a canonical spectral pair of

L(A) corresponding to A The eigenvectors of X(Aj) are linear combination of

q~l(P ') , qp ( ),) - columns of the matrix R(A. If L(A) is singular

of rrder one, the last column of R(A i t  a iingular Igenvector corresponding

to A j Since the columns of 'i(A ) are independent, 'ILnc sequence X(AX) corres-

pondirg to the eigenvalue A,is reuiar. Collecting all the pairs

(Xi 4 ) ,J(A )) , 1 .€ J t, we get tht- canonical tpectral pair of L(A) in Q0$

which: is denoted by (X 0 J ). Pit !.e,iuence X is called also a canonical
0 ) S 0 0 C

Jordan seiuence of !,(X) in I. and i; obviously regular.
Ll

Let now L(A) V I A! he a matrix ;Ll ,nomial, where A are nxn matrice,.
!=O

We consider flrst the regular cas e. The spectrum o'() in C i" t'inte. Takint

a bo ,,nded domain L. wlii- .'nta" the spectrum a(L) we consider a canonicalU

spectral pair of LO) in 11., wiich 'i; dened by (XFJ) and is7 called th-

finite canonical spectral pair of 1,hA,. ) imiarly, XF is the finite' canonical

Jordan 2eoluence. We say that = -- 4 i ar ei,,envaiuc of 1,(P) of mult ili,

f = if in eigenvalue ,f ' pu.lynomial

A, = m )

f ttie 74me multiplicity. Folowir*g butt.rt and Rodman :1. [ 4 ] we den Ie by

_ ,J ) a canonical slectrai pair 7 . ) correq,,,.indi r,, tc I.. We

sai (X-,.T) a canonical spectora. pair at. infinity aid X anorit:

.ordan sequence of L(A) at infinity. Then X = (XjX a i; alled a kan'nical

nrlan sequence of I i) ir n fihit ,(mll x plain qr ml I y a r.anion icaI Jordan

fv tieri'e of LCA), and X, ', wh r.' = i,9 ., , i:; a canr11(al 'inc'cI al

1,et now I( A) be a ingular matri x Ioulynomial of order . Thern the d i;creto'

:+pectrum ad (L) of 1,(X) in C i:s finite. Th ef point A is crn,;idered ac a
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point of discrete spectrum of L(X) if A = 0 belongs to a d(L(-)). In the same

way as above we define pairs (XFJF), (X.,J ) and (X,J). We say that the -e-

quence X is regular if it is regular with respect to L (A) and the eigenvalue

X = 0. Then the definition of regularity may be extended to any Jordan sequence

of L(A) in the infinite complex plane. Obviously the canonical Jordan sequence

X, either in the case of regular L(A) or in the case of singular L(A) of order

one, is a regular Jordan sequence. If L(A) is singular of order Gne, The adJoint

matrix adJL(A) is not identically zero. Taking p00 (x) equal to some non zero

column of adjL(X) we get a singular root function of L(X) which is a vector

polynomial. We can assume that 00(A) never vanishes, otherwise the vector

(P0(k) may be reduced by a common polynomial divisor. Let r00 (X) be vector poly-

ncmial of degree q0 ' For any A0 the vectors

(0) (1) 0 (1- ) Phore h _ 1 d'"P 0 (A)d M
) (A0), k 0 ') . , 0 (, )6e (AC0 ) : dAC

form a Jordan chain of L(A) corresponding to the eigenvalue A0 . For A0 =

(q (nd 2),(0

the corresponding chain is defined a, () 0-1 .o),) 0-2.(0) -.. , a0 (0)a i

actually a Jordan chain of 1, (M)(A) corre,;ponding to A = 0. The above chain-,

are called singular Jordan chain!, of L(A) coi'r:ponding to 0" If 4 0(A) i:-

another singular root function of I,(A) and 0(A) is an irreducible vector ,oly-

nomial, it is easy to show that 40 (XA) = i(P (P) where c 0 () its a cons.*tant.

Let V0 be a space spanned by all thie :' ins'flar ei -envectcr., of L(X). Then

V0 is called the singular eigenspace of 1(A). :'irice all the isinulitr eien-

vectors of L(A) are given by (p0 (A), we caun represent

(2.3) = 0 (01)

for any AoEC.
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Finally we consider the case of a linear A -matrix, i.e. L(A) = A1A+A0 -

If a matrix XI(N0 ) is formed by the column-vectors (0) (1 , .( q-
1

) of a

Jordan chain of L() and Jl(A 0 ) is the corresponding Jordan cell, we may write

(2.4) A1X1 (A0 )J1 (A0 ) + A0X1 0) = 0

Similarly, if (XvJ F ) is some finite spectral pair of L(A), then

(2.5) A1XFJF + A0XF = 0 .

Since L(*)(A) = AL(I/X) = A0 A + Al, then for a spectral pair (X ,J ) of L(X) at

infinity we have

(2.6) AIXW + A0X Ja = 0.

Combining (2.5) and (2.6) we get

r A-JF 0

(2.7) L(A)(XFX.) = (AXF AX 10 F
Fs1 9 MLO -XJ +I

In the rest of this subsection L(A), if not mentioned speciall, is a linear

singular A-matrix of order one.

The next two lemmas follow from the canonical form of a singular pencil

of' matrices described in [I0].

Lemma 2.1. The dimension of the singular eigenspace V0 of L(W) is equal to

qo9 where qo-i is the degree of the irreducible pclynomial singular root fur'-
tion ko)(A).
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Proof: Taking A0 = 0 in (2.3), we note that it is enough tc prove the indep-

~neneofth ecor (0) (1) (q 0-1)endence of the vectors 0 0(0),P0 1(0),..., 0  (0). Let us add to this chain
(q0)

the vector (O (0) = 0 and denote by X0 the matrix formed by the column-vectors

of the extended chain. Similarly to (2.4) we have A X J0 + A 0X0 = 0 where J0 is

a Jordan cell of the size q0+l with eigenvalue A = 0. Assume that the vectors
, - 1

{Ii i (O))j=_O are dependent. Thenthere exists some vector

= (0) (1) (q)(qu (u ,u 1 ,...,u ,0,...,0) with u~q) 0 0 and q.qo-i

such that Xou = 0. Define a sequence of vectors {(i)}q0 by Q) = XOJq-Ju.
0 ~0 j 0 0

Obviously )0 ) ()

Po (0) 0 and 0q) Xou 0

Defining 0(jA) we get
j=0

(A A+A 0)(A) jL(AIX0 J 0 +A0 X0 )Jq-J u + Al (q) Xq+l = 0

Therefore 0(A) is a singular root function of L() and its degree is less than

q, i.e. lessi than the degree of t%0(A). But it was shown that %0(A) should be

proportional to p0 (A). This contradiction proves the lemma.

,orollary 2.1. Let A ., be distinct complex numbers (including =
1I t i-l

For any above A let us define a -,ingular Jordan chain {()( ) } -uch that
t j

(i = qo" Then all q0 :uch definti vector,- form a ba;is of the space V0 .i=j
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Proof: The vectors (J)(Ai) may be represented as a linear combination of the
qo%-I  () ()=( 0 (0) ,.,( 0

O-l)

basis {%J) (0)}j 0  Q):(X-) (( 0 (0),...' (O))cij, where

1 di q0-1

iJ =yJ--dj (1,X,...,X )' =. If A = then 0)(Xi) = 'O
dA 1

The columns cij form a square qoxqo Vandermonde type matrix. It may be easily

shown that such a matrix is invertible. Thus, the corollary is proved.

Lemma 2.2. Let X = (XF,X.) be a regular Jordan sequence of L(X). Then the

vectors of the sequence are independent of the singular eigenspace VO.

Proof: Let J = (JF J) be a Jordan matrix corresponding to X. We consider

first the case when A = M a d (L) and therefore (Xw,J) = 0. From (2.3) and

(2.4) we get A0V CA1 V0 . Denote by U the space of all complex vectors u

such that XFuEV Then for any uEU we have AIXFJFu = -AOXFu E AVC AIV 0 .

Since X = d a (L), it follows that KerA1 C V0 and hence X FJ Fu E VO .

Therefore JFu E U and the space U is an invariant space of J Let u EU

be an eigenvector of JF, corresponding to some eigenvalue A0" Then the vector

XFU0 is an eigenvector of the sequence XF and, hence, a regular eigenvector

of L(A) corresponding to the eigenvalue A0. Since XFU0EV0 we can represent

q0-1

XFu0= I cjrp(x)
-c j

where all X. are finite and distinct. Then

qo0-1

0= (AA+A0 )X FU0  A1  Y c(A 0-X )(PO (Xj
10 F 0 j=l 0j

and therefore 1

c -X )PO( ) = c Cq 0 ()
J=l 0
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But according to corollary 2.1 the vectors OI(Al)p(A 2 ) . P O(Aq ) O( )

are independent. Therefore XFU0 = co0 o(XO) and XFU0 is a singular eigenvector.

Let us consider now the case when X E a (L). Fixing some point
d

0 d (L) we introduce a A-matrix

L(X) = (A1A0 +A0 ) + A0 = 1A + A0

and define a function f(X) = A/(A -A). Then

L(A) = (1-A/AO) (f()

and O(A) = po(f- (A)) is a singular root function of L(A). It is obvious that

L(X) is singular of order one with the same singular eigenspace V0 as the

matrix L(X), but X a (d). Denote

M), where MF = f(JF) = JF(AOI-JF)- , M = (A 0d-I).
M= M.

Then to an eigenvalue A. of JF corresponds the eigenvalue Aj = f(Aj) of MF
and the corresponding eigenspaces of J and M. coincide. The same result

F

hold.; for J and M., where A = f(-) = -1. Therefore, if u0 is an eigenvector

of M, then Xu0 is an eigenvector of the sequence X. The pair (X,M) is not a
spectral pair of L(A) but it satisfies the relation A XM + A X = 0. Then

specral air f L1 A0

repeating our first proof for the matrix L'(A) and the pair (X,M) we arrive

at some eigenvector u0 of M such that Xu0 is a singular eigenvector of L(A)

and, hence, of L(X). But Xu0 is an eigenvector of the regular sequence X.

Therefore the space U 0, and the sequence X is independent of V0 .
Remark 2.2. If L(A) A 1A+A 0  is regular and X is a regular Jordan sequence

of L(A), then taking in lemma 2.2 the space V0 = 0 we prove the independence
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of vectors of the sequence. If (X,J) is a canonical pair, the number of vectors

in X is equal to the number (counted with multiplicities) of finite and infin-

ite eigenvalues of L(A), i.e. equal to n. Therefore the vectors of a canonical

sequence X form a basis in Cn .

For a linear A-matrix it is possible to define the concept of invariant

space. The space V c C n is called an invariant space of L(A) = A1 X+A0 with

finite spectrum if A 0V c A V. Similarly, it is called an invariant space

of L(A) with infinite spectrum if A V c A V. The direct sum of above spaces

is called an invariant space of L(A). An invariant space is regular if it does

not contain singular eigenvectors of L(A). An invariant space is singular if it

is contained in V0 *

Let V be a regular invariant space of L(X) with finite spectrum. If

A0 V ad(L) then A1 A0 + A0 is an isomorphism on V. But (A1 X 0+A0 )V c A1V and

therefore also A1 is an isomorphism on V. Let X be a basis in V. Then we can

represent A X = -A XM. Moreover, M may be brought to the Jordan form, so that

we can write AXJ+AX=0.

But then the pair (X,J) is a spectral pair of L(A) and the regularity of V im-

plies that also the sequence X is regular. Analogously, for a regular invar-

iant space with infinite spectrum we have a spectral pair (X,J) with a regular

Jordan sequence X such that

A X + A XJ = 0.

For a regular invariant space V with finite spectrum we define X0 as an eigen-

value of L(A) in V if there is some eigenvector of L(A) in V, which corresponds

to A . The spectrum of L(A) in V is then denoted by a(L,V) and consists of all

eigenvalues XO . If V is with infinite spectrum, then

A0 E o(L,V) iff I/A0 E o(L ,V)
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Now lemma 2.2 may be formulated in terms of invariant spaces.

Lemma 2.3. If V1,V 2 v... , V tare regular invariant spaces of L(X) with disjoint

t!

spectrum, then they form a direct sum V = V 1 (V 2~ 4).$ which does not intersect

the sinp'ular eigenspace V.

2.2. Linearization of A-matrix.m

Mi

We discuss here same linearization of a matrix polynomial L(A) I A JA
j=0

(for detailed description of linearization of A-matrices see [5]). Define

0st1 0h e f 
= diag(II,... ,IA h

(2.8) A

Then the linear A-matrix V0 .  A IA + A ation of LM.

If L a is of order n, then A is of order m.

Introduce matrix polynomials of order mm

1 00. . .Q0 M1 (A) B m-2 (A B 1(A) 71
AI 1 0...0 -T 0 0 0

(2.9) F(X)= A 2 1 I . and H(A) 0 .

.0

M-1

where B 1 (A) = A + A 1and B +(A) AB (A) + A lifor 1 m-2. Then

the following identity holds
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L(X) 0

(2.±O) E(A)L(A)F() =

0 1l(m-l)n

Obviously, E() and F-(A) are matrix polynomials too, so that the identi-

ty (2.10) proves the equivalence of the linear A-matrix (A) and the expansion

L(A)nI of the matrix polynomial L(A).
(rn-l)n

The spectrum of L(A) coincides with the spectrum of L(A), and if p(A) is

a root function of L(X) of multiplicity q corresponding to an eigenvalue A0'

then

P(A) = F 1(A>(P(X)

is a root function of L(M) of the same multiplicity and corresponding to the

same eigenvalue A . Here F (A) denotes the matrix of the first n columns of

F(A): F X FI ) M (l k , . , m- I)' .

if L(X) is singular of order 1 and ( (A)-corresponding singular root function,

then (A) = F (A)(O(A) is a singular root function of the A-matrix u(X), which
WO 1 '

like L(X) is singular of order one. If 0 (A) is an irreducible vector polynomial

of degree q0-l, then 0(A) is irreducible too and dee W0(A) 
= q0 +m-2. There-

fore the dimension of the singular eigenspace 0 of ?(A) is equal to q0 +m-l.

To compare the matrices L(A) and L(A) at A = we consider the matrices

L (A) : A(1/A) and L (A) : AmL(1/A)

Define F ( )M = (F(A))' and



- 21 -

( ) c ( . . . 0

O.(A) C A(A M C (A) I

C0 ..() (A) - AA for 0 5. < m-2. Then the foliow-

.nlg esuivalence h~oids

(2.12) L ( F O L ( ) )
(A),(-) A)F = (m-l)n $L

Similarly, if p(X) is a root function of L ()) of multiplicity q corres-

ponding to an eigenvalue A0 , then

1(A (W$O(X) = F m()() (X)
m

is a root function of (X) of the same multiplicity corresponding to the same

A,. Here F( (X) consists of the m last columns of F(.)(X) i.e.

F ( A) = (Am- I, A Im-2I,...,i)
m

2.3. Spectral theory of linear A-matrices.

Let L(X) = A1 +A 0 be a regular A-matrix. Denote by AlA 2 ,...,A t all the

different finite eigenvalues of L(A) (f multiplicities ql,q 2 ,...,qt and by

A = - the infinite eigenvalue of multiplicity q. Let FI,2,... , t be posi-

tive oriented disjoint dorran contours around the points A, 2 ,. 9 X t  and

Fo be nefative or'int ,< ow .surrounding all the nontours above. Denote by F0

the positive orlonte,i 'xus ,, ,ti from I' by mapping A 1/A. Define

linear operators

= (2,i)- (AA+Ao) AIdX, 1

JF.
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P = 2i -i)' (A1 +A0  _-A0d "

Using the resolvent equation

L-I ()A 1 -1.(u) = (u-A- 1 (L-I()-L- (1))

we prove by standard methods that P., j =l,...,t, are mutually orthogonal pro-

jectors. Applying the transformation A-l/X we get

P= =-(27i)-i (AI 1 +A0)-IA0- = I + (2Tri)-i (A1 +A 0)-IAld.

r

Therefore the sum P + P +' .+ P + P I and P is also a projector orthog-
1 2 ~ t

onal to P1 ... 'Pt

Let be a neighbourhood of A containing the contour rj. Denote by

@(.j) the space of vector functions p(X) = ((P (() .... (A)) analytic in.. Cn

Q. Define an operator Q. : (Q.) ->C by

QjP= (27i) - I  L-l(X)((X)dX.
Jr.

J

Obviously, Q.(Acp) = Pjcp for (p(x) = const., so that Im P. c ImQj. Let c(X) be a

scalar function analytic in j. Then in the same standard way as one proves

that P. = p. we may show that3 3

(2.13) Qj c(x)A 1 Q((P)) = Q (c(A(A)Q()).

Substituting in (2.13) c(A) = I we obtain Qj(AIQ((P)) = Pj(Qj ) = Q There-

fore Im Q. C ImPj and finally

(2.14) ImQj = ImPj.

Let the dimension of ImP, be d There is some nxd. matrix function Tj(A)
analytic in Qj, such that the columns of a matrix Xj = QJ(Tj(X)) form a

basis in ImP.. For any p E O(Yj) the following identity holds

(2.15) AoQ (P(A =  
i (L(X)-AX)L- (X) p(A)dx = -A Q (P ))

j

V -
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Therefore

AIQ (AY (A)) + A0X = 0 .

Using (2.13) we transform Q (AYj( M) = Q (XAQ (T()) = Q (XA 1X). Repre-

senting Q (AA1 X.) XjMj we obtain

(2.16) A1XjM j + A X = 0 •

Similarly for ImP there is a basis consisting of columns of a matrix X such

that

(2.17) A1X + p 0x M •

It follows from (2.13) that

( AIX ) Q 1A IQj(XAIx)) = Q(A-lA1 X j)M ... M

Hence
q. q.

Q j(A IX(X-AI) .3) = X.(Mj-.jI) J.

~-q.
The matrix L- (A) singularity of the type (-A.) at the point A = Aj

q.
Therefore ('.-I) )=O and the matrix M. has the only eigenvalue X

Thr r J- ,
Similarly, the matrix M has the only eigenvalue A0 = 0.

Denote

XF = (XX 2 ...,Xt , X 
= (XFX , T 

= (AF A0X, MF = dag(M ..

Then (2.16) and (2.17) may be written as

(2.18) 
L()X = T( - MF  0

-AM+I
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Since the space Cn is a direct sum of ImPj, J 1,...,t, , the matrix X is

invertible. For A V a(L), L() is also invertible and so is T. Then for the

determinant of L(X) we get IL() I = const. IA-M1 1 IA-M 2 1 ... IA-Mtj and from

the decomposition 1 (A-A 2 (A-A
IL(A)I = const..(A-lA l •.-) 2 . (-t)

it follows that IA-MI const. (A-A.) i for j = l,...,t, and therefore

dj = qj .

Then we have also

d n- d.-n- q = q
j=1 2  j=1

iising the notion of the invariant space we conc .-,e froa (2.15) that Imj

1,... ,t, is an invariant space of L(A) with finite spectrum and ImQ.

i2: an invariant space with infinite spectrum.

Choosing the suitable matrices X. we can assume that the corresponding2
matrices M. are in a Jordan form with the eigenvalue A.. We may then assume2. 2
that the columns of X form a canonical Jordan sequence of L(A) (see the

proof of lemma 2.5). We need the above spectral theory in order to investigate

a perturbation of a linear A-matrix. If the matrices A1 and A0 depend analyt-

ically on some vector parameter s in a neighbourhood of a point s = so, then

the defined above projectors P. and operators Q. depend analytically on s near

the point 5. the matrix M(- O ) 0 c in a Jordan form, such form, generally

.2 ( ,-innot be ,reslroved. There is a complete description of an analytic
perturbation of a Jordan matrix (see [6]). IfM (s ) is a Jordan cell, the per-

turbed matrix M.(s) may be written in the form2

e qj-l(s)+A 1 0 0

1i) M(s) =e q s A.2 1

1
eo(n) ( . .
0 2
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or in the form

A. 1 0 0

(2.20) M (S) =0 A. 1

e 0 (s) e 1 s) .l .e (S)+Aj

O~ v ou lyIA-NM (s)l (A-A.) q e qj 1(s)(A-A. q - -...- e 0  (s) .

'!he characteristic equation IL(N,s)I =0O in a neighbourhood AEQ . for s close

ernough to s 0i equivalent to the equation J- (s = 0. Therefore the A-poiy-

ncn ial AX-M.(s)I is a Weierstrass polynomial of the function IL(A,s)l near

t1-E- point (A.,sr)) (see [91 about the Weierstrass polynomials). We use this fact

,:pecially in subsection,0 .2 to construct the Kreia-,symmetrizer for such a

:,i-ttrix M (s). We shall need also in subsection 7.1 the following

.':,a 4 -. Let Q be a bounded open d u)maL., arid dunote ')y F 4 K e posi-
0

tive oriented boundary of P .' Let (A) X ((A)WM P(2 (A),...(n) (A))' be a

,,,,,tor function anltci oanQ: 0 and L(M = A A + A 0a linear regu-

~A-matrix such that a(L) nl (2-, 0 =0 Let the integral

11 (PAdA = 0. Then the function L (AOP(A is analytic in Q.

'vie-uf. Using the representation (2.18) we can expresc.,

MA-1(00 x(AT4MF'yl 0 T-1 P(A)

nn tri I IV ' I ei I,( 'l' 7 Pt:i

-- 1'~~~at in x!i.~u



i r,,e' t ic enuigih tu con i icr the cas;e when MI .: .':du:. a. . -

jr, v:Xlu 0 E 0 Denote

(I (A) M F ) A(n

Then (k (ii) (k+ ) -
Te (P (A) + (,A))(-,)n k

(n) (n)(-ip (A) ' (A)(A-A O

S i noe

(n))

0= ,() = 2,'i (n( OV

it follows that p (X)(-X ) is analytic in 12. Then the analyticity of

(k(A) is proved by induction on k from k = n to k = I.

Let Q20,1,F be defined as in the above lemma, but L(X) be a linear singu-

lar A-matrix of order one. Let L() be factorized in Q2 as L() = L ()L (A)
1 2

where L (A) arid L2 (A) are A-matrices in S], and L2(A) invertible in

2-S 100 and, therefore, regular. Denote by 1,2,..., At all the d ffer'ent ei ien-

tvalues of L.2( A) in rOof' molttipli cit ies4 q~2, .,. As;sum, t hat tie: e giv<e-c-

tor's of L2 (A) corresponding to any A0 Eo(L 2 ) are regular eigenvectors of L(A)

corresponding to the same A . Then a root function (P(A) of 2(A) of multiplicl-

ry q corresponding to an eigenvalue A0 is also a regular root function of L(A)

of' multiplicity at least (10* It follows that a canonical spectirrl iair

(X ,J ) of L (A) is also a spectral pair of L(A), and X 1.; a rgular
Q0 00 2Q0

Jordan sequence of L(A). Lemma 2.2 implies that the vectors of X Q are inde-

pendent of the singular eigenspace V0 of L(A). Define a linear operator

inW, : 7ll ) ,C n  by

- . '.F .. -. '2 -

•~ yj
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1,emma :.5. The space ImQ is a regular invariant space of' L(A) of dim(,onIU

:q 2... q and the above sequence X form its basis.

12 2
__o_._ sin equivalence (2.1) for L2(A) in C egtLI() ()D) ,<

where D(.) = diag(dI n),d2 (A),. .. ,d(A)), and di(W), i = 1,...,n, have a t'crr.,

given in (2.2). Replace the operator Q by 01 = Q.S-  Since S 1  s an :,om.IrIr.-

,sm on O(S2), the z;pace ImQI coincides with ImQ. For any A, j =,
-kJ D~ll)--

define vector functions W.. (A) =D(A-A )kl f-r k = 0,1,...,q -l, where D(k (1 - ki k i k l : ik (ji

-' olmn of D. Then Ql( (D

andthevetor {. ( k 3j

and the vectors {( W(A } q i jk=O form a Jordan chain of L (A) corresponding to

a root function wp (A) = R.(A) (here R () is the i-th column of F(A)). The auvtr

:iar.s f:rrm for all 1 j t and I i n the canonical Jordan .e,,quen ,-

of L,,(A). Thud we have proved that X belongs to imQ. On the other hand,

.; ::coar' function ip(A) analytic in Q may be written: 11 )/d ( :

( )(A) + (2)(A),'d (A) where p1 (A) is analytic and $ (>Y/d [A)

iLnear combination of the functions (A-A -l j ,-- t, (1 -1.

Therefore the space ImQ is spanned by the vectors of X , and being indep,-ndeiT

these vectors form a basis; of ImQ. The number of the vector. in X .tv

1 (1 +, . +qt. 'he space LmQ has a basis, which form a regutlar Jordan

I'r]nc C of" the A-,.itrix L(A), and therefore it is a regular invariant ,,pa,c cl

t-,, rr'iat r LX. The l irrid :; proved.

komark 2.5. The ahuvo. lemma may be also applied to a regular matrx i,( T)h. r,

therm, are obviou.;ly no re:;triction; on the r'iL t divi:ior I,,() if I,(A),
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3. The cae;L of bound(d ei .nw tll.

Coni; ider the problem (I. I) ni a ne i ghbournoid S2 ') d:

where = ( w',so) and Res > 0. Since the A-matrix L(A,C) = .A!AA+:i

homogeneous of order one, by introducing A' = A/141 one obtains:

(3.1) L(A,C) = tflL(A',4').

We consider L(A', ') as a P'-matrix depending on parameter ,' i(

In the first part of this section we investigat in general the charac-

teristic equation (1.6) qnd the singular '-matrix L(A',,') fo: §' = O.

In the second part theorem 1 is proved in the neigbhhourhood ( ' w,'..

-'0.

In the third part the results of Section 2 are used to analyze t;,e L,:r'

' r'ture of L(A'rI) for C'EQ( ) when o' = 0 and to r'v ti . -',:: ". -tr~ur fL('{' o 5€(0 -0

cerning the assumption 1.2. Then theorem 1 in 2(i0) follow.; quite ear:y.
0

,.i. Preliminary anaiysis of L(A',').

Consider the characteristic equation

n-i
(3.2) I L(A', ') = I a (c')<e) = o

j=0

wince IL(W',')l = 0 for s' = 0, the characteristic pc,,'nomrai may h,, wrll...

ol<re

po , ' =AI AIII(') n  + terms of lower order in A'

"n the higher.t term in p0 (A',') does not vanish, the A'-matrix L(A',r,')
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X r v r, )(A k 1 (~ )K

where

000d the matrices 14 f~)ir e anialyl -c Iot 2~~ t may be assumed that M(

a.orian r:,itr x W ti. th e j gonvalue a 'Tie mat rix X(( and henc e I.C

.,vert~~~~ "b~i ' r~
0  ' there are no elgenvaiues with Re X! K)

~ etf-ir'T cult case -f Let -,eA 'C . Then tirere

.TVE,' )f c' Dre' podi tu 'Ihoref'oreNS M~ s

* ranrol f rdr .or crnveni enre we replace 'I L~y q. Tioe per-

.1 I . 1- in a I.> 7



Th character istic eqiualan n ear, the poit tA may yewrtr.&

+ AK~ +

wcaere J '.no a enaiies of the m-atr-,,x A( 'j t

le- end' -v %n Ir,.Fr one of then, rzay s, we 1.a v r-

-'ro eta' tion KSiG) near the i-oins ' (

a -etiJ and1 [Tll 2. xpendlInu,, >' '

'' ( -~ I ii) Ak' /i~<i we nct, rt :2 2?

>characteristic equation for M

-iu valent in some, ne -hboorhoa(,1 of the apoint K A',2') In a iol'iti

s~osthat e aI', r ' re the caM fcentF- of' I-,, ar

retndingr to the- tin(-tan '%/ ) ince ' -P 1' e n'- k

K,..are real for rTaf inary tho 1a-ma ;roper '1;!p

F 01 , <pr. i nt imm'e I r lr K dJe ' 'cf

K (ro far example tr- ipra- 1-tmm"> 0 Q r a rt,
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a lurm-vectqr v1
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the eigienvalues ' f N. f.atm i, eA . : . .'

Let us consider the proolem jI}; a 'u: rt. .

d
t.e differentia! operator -- - , .nave

d d

dx

-,, U § introduce a transfor-mation

v : 4 ' u , " : - 4' .

e v and G are partitioned as

and th , tt2'rl v a-A i

V \,-~5  }~ >. , , X - , . ,

r ,,V

-,

AX,,-



Since the matrices X- c' and T' 'iare rrnunad .r b', e.,trx

in vari4ables, v and beo:

3. Re2vkX)l + v~O *d K~Y (j72K X)
+ >

Here

IAuJ = vS=K2  o

scon (.18B)follows that

2 
.x

K))

~.i'O) Re lv 2( xl + ~V.(y2

meproof of -one asieo~ae'r Prot' em ' 3

)f- '' A.'t. ia

* 'i ~~''Y 'K pr, * ~ . . '
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> .v > 11 v Ti2 _ - lf

Ajplying to equation k3.18)(A) a g.eneralized energry method ar in [2] one der.xe

an estimate

2 K.
3.22) 6-Re :Iv (x) 2 + IV - ci (C)I X ix

F I Res F

'emna 3.3. The conditions (UKC) and (UKC) in the neighbourhood (q() are equi-

valent to the condition

det S X ) # 0

"roof. We complete the definition of the matrices U.c') for al] = iJ

by setting U.( ') = i when Re A' t 0. Then
J J

9< 6'), = diae; U '), U2( '), .. .,U, ( ')

continuous at the point ' with U'O') 1. Let us introduce a new varla!ei

-I F with partition yF = (Y 'Y][)' as for the vector vF Consider the

eiuations (3.18) (A), (B) with G 0. Equation (3.18) ,A) in the new var.arle

becomes
ifNi N12,

dy, (ii 12)d x 0' N o ), i

where N 1 1 is of order( Z-i) ( P-1) with eigenvalues :. r I

and N22 has eigenvaluec with Re A' > 0. The solution ,"ir

r (R ) is
= 0,_ ,y1 x) = exj,~ i; r ?:.y11 I (X -X

hen the general solut, jon of the homoen :u. , , ., , ,
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(3.23) P(x, ) = (P(x,O),2(Px,), .,PJ(x,) ))y(o) M x)u(,, x),

so that
(Or, :X 0I( ')U( ')(y (0),O)1

The vectors R (,1) ,...,p_(O,,) depend obviously on r' and are continuous" func-

tions at the point with the value

((P] (0 ), _(,) , x10)0 X

The columns of X (r ) are independent. In Section I vphave defined alsc the con-

dition (UKC) related to the "shortened" vectors (O,(') which correspond to toe(i i
) '0

matrix X (t'). Since X(r') = 0 and the columns of (X (c 0 ), Y (v)) are inde-

pendent, also the columns of X Ir 0) are independent. Therefore ,and !V('),

are, as was stated in Section i, equivalent in Q(C0). According to O]f),

det S (p(0, ,..,_(, 0 so that det S X (0') 5 0. Thus, the iemrn

is proved.

Consider the boundary condition (3.18) (C)

:2", ,v F O) = 7,xv (0) +SX v 1o) :

Then under (JKC) we have an estimate

Iv ( )' 1 K(jv 1  O ' + I )

Choosing the constant c in 3.22) small enout-ti 'compared witi, . '

once the estimate (3.20).

To accomplish the proof of tJ eerem I we '-hould .-how he, ri.. 1 '

let det ' X.(0') 0 and a vector y](u) satisf~ e,
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S x (Q0) = 0

Defining a solution Q(x,,) of the homogeneous equation (K.,) by (3.23) and

using the above yl(0) one obtains

so that g(C') is continuous function of ' at the point = r' with

F()= x X )Y;0) = o

From estimate (1.2) one arrive- at

.-c that A(O, O ) = 0. Rut, AQ(OO) = A X1 ())y 1 (O), and since tte cW.umni, oC

A X2 CA) are independent, it follows that y1)(0

Therefore det S X (qO) # n, and UKC) is satisfied in a sufficiently small

neighbhourhood Q(').

3.3. The neighbourhood l2(') with ' 0.

We begin with some kind of perturbation theory 'or the A'-matrix TiA',''

considered as a deformation of the singular A'-matrix AX'+ (uw').

Let X' ' ' ne all the different roots of the equaton 1o(A',W') =

with multiplicities q,q2,...,11t. A: shown in s.;tatement {.I, exactly

(n-l)/2 roots (counted with the multiplicities) belonr t, the hail, tlare

Re A' < 0 and the remaining (n-l)/2 roots have Pe A' 0). We -idd to the wh,.],,

set of roots the value ' = = with multiplicity (I. I.



The contours T. I ,..: F .I :..r.n.t.1.

the neighbourhood Q( c ') K:thler .r.zns>. ro4 t hatLT 1', any

00

For W'E1(K ) with s' t 0) we define thie mutuatlly .rrthognnar. projectcor:-

j K '), j 1 ,..tand PK')as in K3 36). Now these projector:i are no,

defined for s' = 0. In thin; s-ubs-ection we suppose that assuinpt~on I.; J .utno

necessarily 1.2) is satisfied. Then the following, result taaes place.

Lemmia 34. For any j , .1,.. ,T there exists an nxn. matrfix val ued f un -ti on

Xj(w' ,s' ) analyt ic i n Qj'),wh ico f ulf il t, t.e f ol1 Low i nt connI'. cn

a) f or s' 0 t:0 soumr: X: .K,'''~rw <. ' t

2)for s ' = 0 these coinl::>. : . to tiie § r:l'r:.'r. 0. w nd at

on int ' they form at.iu.:'4m.~

00

where wpjA(' ,w' ) is defined~ a: . it, ss'

c) there is a q xq. marix-vuoi or1111 o.,;' . .

N1,' is a Jordan cell with A.:f eA Lah a ' i

(3.4) A X. (r,' (P. (r.') + (KU) + r K......un:: 'E .

1'root: Denote by S20 ) oec 0.*r5 obt:..1 f<':

tnt nntour 1'. and).-hi ckj A' : ~0 A,'VI:

((N

,nt~rr)riv-'' an (I f ratp ... ' 0' ' 2'

. )( '1Iq

''(I rm



According to (2.14) ImQ W) = lImp.c' fol. C.'EA2(r ) witi, 0 . "inre

P(A .W6,0) 0, the characteriltic polynomial FL(A" ,,,('),s i:r divisible L~v

<and the constant matrix AP' + iR(w, ) llar :n (-j reliva lIe 5 ( of Som~ar

tiplicity p > -. The matrix AV' + iB(w' ) h,,- onlv Ore veCLr, flamC.e

X,',corresponding to the eigenvalue 9=0. There iOoe x nt,

D(A,w') analytic and -invertible for A'CQ(X') and K1,0EOq wicrl pjrov.de-

the similarity tran- fOrrI '011c

where

art a(a i.:i j ',

r. tl~ 1L h~l~ irf t. ry a v th, . n el X

1- M t~r x ( I . DM
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one arrives at

E3E2E1(N 0+s'I) = diag(el,l...,l) + O(s')

Comparing the determinants IL(A',C')l = s'P0(O',V') and

IN0+s'TI = s'(±e 1±e2s'±... ±e (s')0 - 1) we obtain that the equationp -1

o (A', ') =0 is equivalent in Q(X') to the equation e (A' ,) = 0. Therefore

qj

el( ''W; (X'-.) Jf (') with fl(A') # O. Introducing finally
'01 1 1

E4 = diag(l/fl(A'),l, ... l) we denote

(3.28) N(' ') = E3E 2E (No +s') dia..(e (A.,')/f )

The matrix (IO (A', ' is analytic at the points A'EF ..... ( ') and

00 (N ',0')i diag((A'-A!) 11 ,,..,i

Let us replace the operator in (3.25) by a new one, which is denoted again sy

Q ( ' ):

(3.2 ) Q C I (p = (27T )-l D(X',w')[(N,(X', ') )-](BOn-p ] O( ')DI'.

'3

The operator Q (W') in (3.29) is analytic in 2(PQ). 2 ince the matrices

Ek(2',4'), k = 1,2,3,4, are invertible for A'€E(X'), 0' 0, the spacer

LmQj(r') and ImPj( ') still coincide for s' 0. The matrix

D(X',w')[N'(X',')-'O1 $ ] multiplied on the left ty 1,(X',<') he,'om ,: :-ji.'
0 n-p

in Q(A])x0(<). Therefore we have



i: dfine vector functions

(I -k-I
( A -A . , C , .. .)€ ( ( =::-' ., . -

and a matrix

Then the matrix X. (A',' is determint-d

Cundition a) of the lemma is obviously fulfilled.

7T C

(i .-k-j

7T (F
.1.

O t i o- ) i: t
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I'-.We, prove fi-.-t that dim%~',,(,) > (n+l/9 indeed, if q < (n+ ~j

.11'o~s ttj~I) XtA)are not i ndependent. Let v()= (v (0) , v(C e a

ve~o schtht K X ) X U'(r; . Then v,.(0) # 0 arid

u (xs' = X(w , s' ) exp (x :,I.,5 v 0 u

T+

iroo v -al rornogeneous solut ion of e, uu' Cr n11 A, 3i ll, (F

c et§t K rC 1 A ald X7 '-..:eeoc C0' ,z o::n.-Jei a s G 0

xc thier h.and ,tio~ ~~~r 1
-'Ux,'

noni zero) for ' 0. 'r0Thrl

- -uy ,:Ilp 'x t at'e' fo. or -x' '

. M.

I x- X



LI X ,-

in s- a Jer.erI

ar:' Compar Lugr the determinants, X an d !T,' I we con cld

cisc t> ~i inv ert ible for o0 Denote T'A(

~''~e ,7) an d T1' are iartic oned accordinr, to th clmn

J r - i r- x val'N"I 4 n : r i

ron- 7 er ,

I r u ira '; l '

'r r',orn ry x

X I

KX



al ~ 1 -f a s oalai funct ion

analticin the half plane Re P'~ and tent: to zero

A' oo Mlplying_ the matrix L Kby~t 15 ( U' a nd

i.' ra' , - mavtnary axis V' we have from (3.32)

T'(( )iiRe A't

K

-l K
Fez'

PjLvenp/'J',' A' 1,s not a roat of (p.(W) for any m'K ' atrix

q '< sinvert i h~e, a follows- fron independence of the su-iamn. of' X

,fi. k,') Itand IT. ( IhI

-v .jX 1 (' r Pia: a singulari7ty of thle type I T( ') . i nce IT( r ' )It

wIaol T(~' fo r s'=0, Lzo u- .2 oa' c .' >

"I".- rijatr, i x "uoot i on .(1 21lI

* ~. 51 .i: niaw :':it d iffirjiIti(0.'. in !,.osr, way w( imoov( iMvj oa ,

* . 7,' wrs. - 0 3



it c ba '7f r* 'at.ver-nely, If ?ijv h ter n u<'t,
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,.~ ~ ~~~ a r- thtIxn; e r

e 'Ii

co lxqk 4' -f ,.at r ti xntu w
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x- r Od a. a) ,I'- c I+ IC th
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-xtending w(A') to a n-dimensional vector u = (ulu 2 ,...,ut,u.) by adding zero

.mmonents- in the suitable places we obtain

i tie lasL' component of u. is non-zero, Then the vector

v= (A'.Mg( ) )u
\ 0 1)

c , ecause

:t' ) X(t)u = L( A, )X0(% ) =

V is a Jordan cell, the last component of v is proportion-

mr,:nent sf u. with the coefficient A'-A! $ 0. Therefore the

v s different from zero, and the lemma is iroved.

nr ne-xt, con:iderations we continue to prove s imu taneonv']y thPorems 3.5

to problem 1.1. By substitution u = X( ' Tv, ' T '

r r 'u <ht to t-- form (3.1-8). The eigenvalues of the matrix Ni be-

lef Re < c 0 and those of M ()-to the ult plane

A' .. We may even is:ume that

" ',Nt) et< -61 and Fe M , ') w6 t o r, ' -

:isrunt t - Li r, RH

t,: :,iorgi to e~qua v's (3.18) (A) the ['eneraiized energy mntod, m,' air::

K l vC- x ) II)'-11()- ,) I__

-f .t.s-' rlIs&. 'd,4.-.. .anI,,:iS,?bfIiflUUv:d:jjbIlbisauidl
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The initial values v (0) and v! (0) are given by

( exp(-III(I')x)T ( ')F(xi <J)dx
(33)v (c) 1

and

(3.35 SXI )v() + S Xli(c')v l(0) = g

2onsiAer a linear operator Q acting on the space L2 (R
+ ) of n-dimensional

(n-l)/2
*0-.eor-functions 5(x) with the values in ( ) and given b;

= j exp (-M 1 1 <x) (rj)T.,(x)dx

(n-J
lemma 1 .1. The imagIe of the operator 4 is the whole sj ace

rProof: The operator Q may be expanded on the space D(R + ) of -eneral :ei vec' I r
+

functions dual to the space of exponentially decreasinf, on R v:,'tcc fu

" .R)is the closure of L2( + ) in the weak topology of j)( + , arn.i-

tinuous operator on D(R + ) with a finite dimensional range, it follow:- tL'

L Q(D(R*)). Taking F(x) = F(x 0 )6(X-Xo), where 5(x-x ) is ,ei '

function, we obtain that Q(D(R+)) is spanned by all vectors v of the form

v = exp(-MII( )x) 1 1  where G1 1CImT 1 I(C%). Therefore Q(D(R+)) t he linimal,'

Invariant space of the matrix M (1 j1) containing the space Im as-

sume the vector r, to be partitioned according to M( " f

lemma 3.6 that for any i t j ,< t with Re A' > 0 there i., a vect' r , m Trlt',

w th non-zero last component of' the partial vector G.. The matrix

M (r;) is in a Jordan form with the Jordan cells M.(r'). it may, 1e ea ,sily shown

that the minimal invariant :pace, of M Tl(' which irc , isi " 5 ii' Vv'' i lr

wil also include the all space of eigenvectors and g-ner i co, n,(,.'rc;

M (r,')) correspondln r to the e, gervalue A! . fa ii ' !-

with R? A >> one proves that t, hr, space (5( ) ) ,c Q a ,] , 'P-,1' 'I"
,1

tn-I/:

C.¢-* .-. ~. ''.
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Analogously to lemma 3.3 we have

Lemma 3.8. Let the dimension of the space V0 (w') be qo > (n+l)/2. Then the cun-

ditions (UKC) and (UKC) are equivalent in a sufficiently small neighbourhood

Q( 6) to the condition

det S X (') $ 0

Proof: The general solution ((x,C) of the homogeneous equation (1.4) for

V'C ( 0 ) is given by

(x,<) = (( x (2(:,- ,O -~ , ) 0 x I(r-' )ezra( I r ' < ,'x v1 0

so that

(ml(0, C ) 2(0,,..(,C ) _l(C, )) = x ( ')

The columns of X I(') are analytic and independent vector functIons for C'E1C(r,).

Moreover, since the columns of the matrix (X (r'), X (')) are independrite anc

SpX_( ') = Ker A, also the columns of the matrix A Y. (r ]) ar indep~endent.

The last is equivalent to the independence of the columns of' the ":;hort.enJ"

matrix O (') Now the claim of the lemma i obvious.

Lemma 3.9. Let dim VO(W') = qO 0 (n+l)/2. Consider the problem ti.]) wit, a
n-I1

boundary operator ', which is a constant n n matrix with ', (Kor A) = 0.

If problem (1.1) is properly posed for w' w,) in the nsof' theorem ,on

det, S XI(co )  0, i.e. the condition (UKC) is fulfilled.

Proof: If S XI ()v(()) = 0 1',r some vector v(O) $ o, then

u(x,.' ) 1 x ('')x-xI,( I.( M ( '))v

S homo~terlou:; so ution ,) ,' ation (1.1) (A) and

I u t /,. ) :: ,'( :,'),



where g( ') is an analytic v.,,t,-r t " witt. ,(r ' =

columns of the matrix A XI r A e r

Au(Or r') =A X1 (rr()vT(a) a

We get a contradiction with estimate (1.1), whIJch impl e.: th at

for any C' = (w ,s') with Res' > 0.

Now we are able to complete the proof of theorem i.';.

Let us return to formula (3.34). For a fixed Irl we con-,,de r v : a

function of C' and define

(3.37) V ii(O,') = V (I)JM exp(- 1 7 ') 'i " . .-

The function v (0,[') for a given C 1, 2 : anal,, t i. A'" .II '

to lemma 3.7, fo, a suitable F m)ne car obtta;n -tr vol E. ' :

Let g in (3.35) be zero. Accordil.V to lemnma "-, thf, m.t..

invertible and i(0 ,r') V (0) a 1 a ... ira]iti I r. ;') ...

implies that
U IIF~x ) tV:

Since

Au()) ) /)-A(;'. "v ( ,'") + X )v( C,.>

we obtain

A ' X r' )v (O,r,') + X r' , r' I an X : ) v ' E " 'r ' i v ' "'- ] 'UI' " : " ' ' '



But vIT(O,C;) may be any vector in (n-I)/? and therefore

Sp(X 11 (,))p(X1 (i,;) X , )) and -,: '

According to corollary 2.L the n column-vectors of the matrix Xir') -,pan the

space V 0(w ). Hence Vo(w O ) : ?p( ( (')),X((' )) arid di, Y' :

Theorem 3.5 is thus proved.

Let A and B(wl) be symmetric mitrices. By setting, the tnundary ,4,r; ,'.

in (1.1) (B) as S u(O) = u I one obtains for w' properly cI rl

(see, for example, [i] p. 636) Therefore the ,rem , implie , indeed, ' ' t'

matrices A and B , j = I ,2 , . . . i fm f . .

Now let assumption 1.' be,, (ifi Vd Tl , yf I-t ' :di: r.. '1

theorem 1 is already proved in lemma . . m ."n iI Ii Ir rc :, f , .

of this condition we turn ack t. :.m*t , , ', : x

invertible in Q(c ), it foliowc: ft'oi ( h[ )

2}oocing the positive con;tant .n m nall r , :.

. one obtains

Wituation (3.18) (B) impile:c trtiit

since u = IX(r, )v K Vi , 'i- j ,,:, ' :

I [ t )1 u ~ d + c- ' : _< I' x ,



(3.39) Res;u 1 F+ U'~ I' )J

. .. . .I'l Re

To prove the required estimate (i.i, t ! el-ouK to I 1 i.",,

(3.40) Au (o)l? ('j + " "

Wf, consider the vector v (x) at ,i t', , r . t ,' 7A , !i:,r,- iL l .

fixed, and denote vll(X,') = s vi (x). T vectc- f ,

the equation

(3.41) 1 rim (~r. Tx ,'

:ttd is an analytic function of r'EI(r, ). Ap Iy~nr o t, ( ,.hi) t.oe r-ero I

f.riergy method with the symmetrizer>, , 1 = we cot ir iEmatmt

r- the constant K i rid-;o.i j'r.'f '' ' KJ orA Y. 1f, ,r.1.ttr,"

w;th respect to ;' *rhe t ,a ,r. c>., a.

av (O, r'

r 0 va

['.I ve'tors v((OC ' ) an T ' " ' ""

_ y _ .. . .''/ - -- N P '- , ' -- .1 ,. ... . • .. .
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2 (I ( , 12 2 s 22
(3.45) 1v (o,1') 2 I (,4 )I2 i s -) - K( I1iF(x)I + 11l,')

Differentiating (3.44) with respect to s' and using estimates (3.42) - (,.45) we

get av(o, ,)Y2

(3.46) as' K( 11F(x), 2 + H2 glPI2)

The vector function u(O,C') is also analytic in (¢) and satisfie:

(3.7)a , < K(jclII(x)" 2 + 1 12 1 ')

3s,

:ote, that r ' = (u',o) E Q(r ), u(o,') E V (w') and Su(O,,') =. 1 0 =C)

The operator S is a monomorphism on the (n-l)/2 dimensional space i3(X T (w ' ,e))

and S X.(C') = 0. Since VO(') = Dp(X T(W',O), X(o',O)), it fol ow: i7mi

'Ker S)nV 0(w') = Ker A, and therefore Au(O,w',O) = 0.

For any r' = (w',s')E Q( ) we have

Au(O) = Au(O,r' )/ = A(i( ,r ')-! .. '" I

.:fre is an estimate

Sup I((, )(0,W, 0U) rjQr) .4

Splying (3.47) we obtain Fina:lyv

IAu(0)I < 4A 11K( I11v( ) [I)/ 2 +lo , I 1 I "

i., theorem I is proved cmtfi .

- ~ -",~Al.
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4. The case of unbounded eigenvalues

We consider problem (1.1) only in a neighbourhood 2(c') with ' =0 T7

case s' # 0 does not differ from the one described in subsection 3.?. The char-

acteristic polynomial

n-i
Y-1 a.<)(AY = 0 with a i(r') = "'A 'AI

j=0) HAn-1AT 1

does not vanish identically for s' 0 and any real w # 0.

Let an(c) a an ) = a (r') =, a(') $0, where
n-i 0 n-2 0n-q 0--i 0

obviously q > 1. The X-matrix I(%' , ( ) has n-(l-i finite eigenvalues and an

infinite eigenvalue X _ of mutljiicitiy q+l. The characteristic poly-

nomial of the '-matrix 1 ( ,r') X'ii'X',') is

n-
= 'it ike th a__ ( )rm y

and at the point C' it take the frm

IL( ( ' , O  l  
+ (+)q l n 10( ,C)

,- -i'0' a

l141nce the matrix L(A',r 0' ) is regular, tlhere are matrJces ,r X r.(t'',x '

ard C( ,') analytic and invertible in Q (r ") and aio anriayt, c ma rii MI. .

and M (W') such that (3.8) holds. However, now % (t' ) i:am'trix af rr-

(1+1 2 with eigenvalues near the point ' = 0. Oirce the ;ua

1, 1, (D' =0, r,') Ker A is one dimensional, the, matrix ri,'( ay h,

t.; umed to be a Jordan cell with th eirenvalue I .

! ,,nma 0.1. The matrix M_(r'), r', j. ) ray EQe r(eeritel rot e rr
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. M(M)

M (C With M(  = (1,0,... O) , M+

M(2)( ,

where C and E ( ') are given as in (3.9).

The coefficients ek( '), k 0,1,...,q-1, in E(-') are real for 11mW-- ll"

St and lin e ( 'j 6~sl

Proof: The matrix M (C'), being a perturbation o<i the Tordar, :1<1 :2, no' ,

written as

0 e -e

M (( c2 + 1~ (i!r ic + i

Ie0) e ( rj ' I

e(i) e I(r,'

The matrix E_(C') satisfies a demand that. on any lower dI '

,ne function (I(k ), k 0,0,...-,q (ee [6] for detail . l, '

a,, a ready ment i oned, has for any (' an e igenvatlu e ' : , :'

C.igenvector belonging to Ker A. Therefore o (C') ! sod >1 ".. 'v

tor form (4.2).
For any 'EI2(g ) and A' in the]F, nei.g7,hhourhood o' t'

i:tic equation



- 9 .9 . . ..* jU'c... .. 4. .

- *9 I .9 , , . ,

- ''"0' x

- . . , . r

* ,* ., ,,..

1 C ~3 'F .r.qt I.'.'

* " U'- :'ir..tp ':.xX

*-'~.:;jp; 1:,. r - t 7 VYflt'

~ r r~t r,. ..



v = vF  v IV, , v

F v- FpTj

= (v ,
vl I,F

and similarly for G.

Then problem (1.1) in the new variables v and G become?

(A) (-I- M( ,'))vF = GF

(B) (M ( r-__1Tv3 ) I T =v

c) I) '  = 1 ____
dx3  ~d~

+ he boundarj dit i on

(I)) X X , )vT ) + X',. .v

1-r the matrices M (W') and M (r') t rer are Krei:- ;yrr -,r i: >!''i,. sr
F

E )(,
' ) such that for Res' >0

... he(( W)' ic,' R) 6 1

* " &- 'v, C) ( * (

vIT > , I n (v' v) Ho -(

Ai i., ng to equatiin (4.6)(A) !,he, t- ra)l 7zfd mp-; rr ,I, I T .,i : , "-

p F(r,') 'me )btains) f(r R'"



~4.8 6ReI~vF(x) U I I,- F . '

T"ak,*rng a scalar product of the euait >. k) W, ti.

-x ,ntegrating over 9 x an',d comnparirig real part - we navp

dx dxdy

dx

1 (2)-
dx

'~~-' enote eo e nor tioK ~ S

fr-m 0 . ) (i9) ) 2

+1-7 *1.

cc

v'r-v iet1



Adding (4.8) and (4.s) we ohto> 0ina iv

4. 10) 6 Res1v + -) civ (O)12;

Unlike the situation in lemma 3._ the conditions (UKC) and (UKC) are now,

generally speaking, not equivalent. However, one can prove the following

Lemma 4.2. (UKC) is equivalent in Q(o') to the condition det I (c') 0.

Proof: There is a matrix U (C') ( 'EQO() F.es'>O) continuous at the point

' with UF (r; =i () " .. rh' transformation

1)' .. ' )

where the eigenvalues X' of Ni (r,') have Re A' < 0 and those of N~, F '

wv Fe A' - 0. Similarly there is a matrix if (' such that

-v) -l() )e (C ' i ) n a
(2)(U( ) i: ) -IM r)% ]U

and the matrices U(2 and N. . have the same features a,- the matorice: ano1 J, F
N respectively. Defining U = ,U,

2 ) ) and U = diad:aTj we (n2ro) '

new variable y = u (')v. The vec or y is partitioned in the same way . h

tet v. Equations (4.6) (A), (B), (C) with G 0 are transformed Io the

],I ll1) ons

(A) yF (N,1  N ,
d(x) ) ' x !,'n = 0

N N d Ni

0 ) N ]) ( d J

.oI,
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Tie solution of (4.11) (A) in 1,(R + ) is given by

Y11,F I F, y](x) = exp(ICIN ll,F('x yI O .F

Since the eigenvalues ' of the inverse matrices Nhl a N22, ve

respectively Re X' < 0 and Re XI > 0, the solution of (4.11) (B' in f,,,) i

-I'yen by

DI, , yi o(x) = exp(IcINll W)X ,

Finally, the value of y (x) is computed with the aid of equation (4.11) (C)

.that

y. () = ( ) 1O)

.,rally speaking, y() (0) is not a continuous function of r' fwr a riven

> . For example, if q =.l and Re e (c') < 0 for Res' > C, then

y() ) = y (c) e, (r I/

,n.,idering a "shortened" vectors we have

tpX() X , U X "X; "ty 7:( "

w Dr r (x,C) is a general solution of the homogeneous equation (1.4). '' c r a-
( 1)

- int y does not participate in (x,C) since the centrutior of

, a '(I) )y ( ) ,
in p(x,t) is X y1 E Ker A. For x = C, (0,() (

, .()YI(O) The columns of X are indefv(ndrinI hiso

,r inal" columns of X (n0  are i.ndepndent of

.... ;,( ,tors ()O,r,),p<O,,'),...,p)1_(0,r,' )depend conl.Inuoui ] ]v n .' and ;>at-

v-,tor (n (
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isfy the orthonormalization assumption of the definition (UKC). The enuality

proves the lemma.

Consider the boundary condition (4.6) (D). Under (LKC) we have an esti-

mat e

4.13) Ivi(0)1 2  <  K(I (O) 2  
+ 

2

Choosing the positive constant c in (4.10) small enough we obtain finally

14 ResvI V 2 +Iv (0)l + IV (0)l2 s K( inK +
I ii \es /

x-lul
:ince the norms 11vil = IX u and 11 011 IT->F y are correspondingly e!suivalent

nr-,rm~ sl1ull I ~()and I , and IAu(O)j = I;, (J , V~ 1 T( r) + X T~ I T T)

inate (1.2) follows immediately from (4.14).

Let us now show that (UKC) i.- a necessary condition in theorem 1. We define

homogeneous solutions P (x,r), ... ,cP (x,r) of equation (1. U A a.

~w (Ctr ) - (0,C;'))y (0) and ccns;ider a huinc,-n'-ss C I or

.,,,, =  (1(x , ) ,P 2 (x , t) , .. ,p)£_ (x~.)> ( ). Pin .. P 0 '  ') :ii rn-rd sn

r, tie vector 0( 0, ') and the last one is< a continuous.1 "unrt ' the,

: , it follows that Aq(,<') tend; -o zer) a. ', t r

: 5 other hand, est imate (I .,) impi : that IAw( ,, )i , , •

i e the norm IAp( 0, C ) I s equivalent to the norm T(P, r ,,

-. at (If, r' ) = 0 and therefore yr(O) : ). T'o'ss, thoorf'm I ': '' , - tn l y
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Part Ii. Difference Approximation ,of the Initia! >~urda.y .0. .

Prob lem

5. Definitions, Assumptions, Sta.ements of hesu.t,.

5..L. Burstein difference approach. Definitions of stabiilty.

Consider the initial boundary value problem (0.2) for the 'a.-e

space dimensions. 1:',l (0.2) is now written a,

(A) 3u +A- + B-- F(x,y,t), x 0, -- ,

)(i) u(x,y,O) = flx,y)

(c) Su(,y,t) = iu y,t)

The matrices A and B are supposed to satisfy the assw t i. . .

We approximate the differential equation (1 ) (A) I- - er-

ence scheme. In order to introduce th!' :scheme we :Ae: -ne i', V .""

y'-, t,>O a grid, which cons .st , ; : points (x ,y ,t, , ,.. . .' , ,e e

I ,10 are integers, v ; 0, - . .and A , , ,' , ', e:-.- "

ii rections x,y,t respective Ly . vie izs.cure that At 'Ax :: i Al,

.et us denote by E and F the ;h i t't,.perators o xt in: ' ,x y

t'rid functions ukx,y,t' and ( iven hy F u x,y,t., x+. , ',;,,'"
x V

,x,y+Ay ,t). Then the Burste in I if'erence operator I",' Th, e.' .1 .

written as

' .0 ' ou(x,y,t)=u(x,y,t)o[l cI-2 F:x . '," . -. '
x y x y y x y

,', r_> (E : IAI A- _ - A ' :- :t . +"-]

' o 4perator [, incl.udeis h,bvi :;iv y er: -. , :t.

The bouinrlary ') erat.,r in . ', i:...........': ......

-- I I -l . . . ... . _____________________



S

(5.3) Su(x,y,t) = s (F E )u(x,y,t-oAt), s(E , F
=0

where the sum in the expression for is finite and includes only nl.-nega-0

tive powers of E . We denote by vb  the largest power of F X in a-

u = O,,...,s. Finally, the entire problem (5.1) is approximated by the (f-

ference problem

(A) Lu(x,y,t) At-F(x,y,t)

5..4) (B) u(x,y,O) f(xy)

(C) Su(0,y,t) = g(y,t)

with L and S defined in (5.2) an (I 5.).

Equations (5.h) (A), (B) and (K') are considered at the rid po.int , 

r: in i, tat.on (5.4) (A) x : Ax, t = c,,t. with v .- , o : , ha

)Perator L is defined. We assume that the matrices A and -vs wel o * .

ient matrices S are constant.

n orier to give a definition of stobiiity for the pr.Aie'n v. w,'

norms in the corresponding spaces of grid functions. :.el x: 1,

space of all grid functions u(x ), x =vAx, o with : : "I.
V V='

define the scalar product (uv)x "I .V Xv (Ax, Wheret ie :i~m

over all grid points x , and norm II oil : 0,).V) X

!fimilarly we define spaces K"(Y,t) , Vj x, an , W

;(-ts and norms

(UV) (u(y,t , .y,tlAyA , uli + Lil(uVy,t

u,v) = Z( u( x,y ),'( x ,y ) xAy ,,ll = ' , y
, y I~' X, 'y!y X,

uv) = (u(x,y,t;,o;x,j,, A'x/I , fi~' , * ',

x,y,t '

t mn in the above definitn r ,' ' -%or'. u u W!'' 1cx;



The :rid point (x ,y ,t) V talea ho rtdarv p in* 1:'

5.5 Otv rn-1 , where t : maxt +

" he number 2 in the definition i1' % i. the maxim;:. :eo:" , fe . i' V
x

difference operator E P which c2ntainc only r-negative p0'Ver0 o E Xx V

.iven a grid function u(x,y,t, we ienote by x Iy ,t tie reo. "''tIr ot'

)( x,y,t) on the set of boundary point:" anl ie!'ine a morn

11 Ub  Il ,t

where the sum goes over al ti.e boundary

Similarly for a grid function ft(x,y " the restriction If x,y an 5 'mi
2

Y l~yare defined.

As in [] we make an assumption about so>va.i ity 0f the Irones '5.,

ince the difference equat'' <'n ,v'ue,

ux,y,t) for x = x with 1 1, the :Vicab' ity : eq-iv..er-t t* OV

Assumption 5.1: The difference operat;r ' ' .''' -

morphism in the space zy,, ... e a 7 .

any O: 27

mnesider the difference appru xiriat A.. . o = ) r AC rTjea'

lefinition 3.1 in [j]:

Tet nit ion 5.1. The approxima' . f ' . "' '' ,,',-. ' l't.. '':. i. .

.uch that for any al ani.i. ,: x' :, . .. '

n.. i for all t = oAt 0.

next definition is a md if, , . '-. *i

& 'ot~on 5. (a). The appr xlifr" .. '. . ''ii ' "' ,.

.- (I ( '



A:: in [3] the analog u."o~w~ rpi-i4:e gives; u:

Lemma 5.1i. if' the difference appruximation is stauie in the !-er__ _

5 ),then f'or the case V 0 the f'ol 1owi ng est imat,.: avova .- i :.

pondingly (O

_____ 2 1A I

u (5X y 9t - I ,11QX y It +

Wo4' denote here by Ilu 11 t h. no()r rm lie- u 1
,,,t x ,yt

Frm o mat u (5 .8) one derm ve.4 as in [,]the f(Io-i etaef r e

c aSe 1' 0, 0, F 0:

0 () Cl~o)2 1 o > 11 hIhIxyt + 1, x ,T}

Y ' mr'

I. , x1

'. r-mtio L relye

"a '; . mate

IIn a qh, x !::I

-~~ ~ ~~ ma t e ~~-e*



i f. r e e r t r*i r -rm~*

f "
. u In .-

'  wAY-t- u::, : ::. ' :, ; "' .' ' I '::." -

i matrx i er iw re, v . t C " ,en. ' a. i . !.. ; "

A)ri the '. ' X

z7 t +

fi IE

a n, -- : "

- 7- i1--

(I ( e,

Z . = C A 4 1 ,- -. *''. - .Ai .. . . C .-,



where 1'is s-ome lineair pera w-m. ,epenois n ir z -irt act: or the

Usexact deriniti on or' P 'w: I Le j<ben in the next ve ti n:where the ori--i err.

* z.) is studied 'or at~ n - A Ii re rent lows i ns V [0r-cMe t~or.- F n zan

.e tall wive also -cal, 4,' the re--e.ar-y at s u!ffi cient ca,-nji tion:i fo

*z t ate 1' ) t ho . 'i n -e-~ at . r 'eppr- *n [ anr i it Li

mpuclie to 'orm-lt IA' n& gia problert 5-

We ns~r 7r im~te. i e. oEi4x ) I gv en,

-M Fal w thy n! th-' 'ai '-~ 5' apoin! to v.le

-':n- ut " ElE

'-Ti



A..h in turn is equivalent to the solvability asisumnption. Theref'ore we shall

.vetine ate the Problem (5.1I4) only for boundedI value:- a:i z, i .e. in a co mpact

ps: parame t eris I z I z_ , % r. T-.o av oid; the rnegat ive po(wer, It :0I

~,z2as well as to simplif'y the notation. erp r teoeao

-XI5z byE zT'(t ,C,z), which is denoted as before by L

IAE ,$,,z) =(z-l(I': + (<-)c 1, (E )+ s,?":~,~

.. n the symboi from ,u, F and g we finally replac-e r

3Ex F" z = 5 P'

b - oundled value" QfI z e,.it! n- 'to C *V

enot hol d for both pr-otP ern- . r r:tneo:'

"'he 'auchy problem..

et us rep tare in '5.'the rI ejr7 II,

e 'Then the amplrl'i Ie... i: (

'K bw:; from s;tr tnvh n"' . , t '. .'.'''' .



dienote a ' i~ ~;, I;E)u

,. hallI choose the ce-ns-tants A: ',x an i At Av such tllal thlee cne

th',e matrix At 'AX).A% + .A -

I /L~ ~v max

now on the fractions At/Ax anld jA' Ay w!T Io I x I- e .

respectively. Therefore the eigenvaluec a*i and b. *4he new rire

arnd B satisfy

rhe eigenvalues z of e(,F I' cIn

zz '1 $-1 :)

22

I 4Kr(W + *p+ -*. . +K

1).,)6) and the Last i neilea tv ne i m!:,e 0,e y erve:

't ateet51 The eligenvaue z, K reur7 a:ncr

;ti,,f ,= 1, lz 1:1, rh r,3,!i, r,(s 4' i K. t Y

P.Awv, that ~,=-- 0a T'T 4 r nA

p r, 0there is an

40



Assuimptions and Cond itI1

let us f'irst surnari ze 'r-e '' '"' '

*' d<ite r -)rty the cas,,e ' "''

:e:Iye -d toc f uf the re L,:mr' i -

T n >1 and L. ". I'artirlart '0 ::xs trot .

tnritrix P is zero, Niwen the c-si. s',o rVf% r7fr

ul- Iwl J , A, , )-This iemain i 1)esn:'-n

-ir i n the I i f 'erent ju a&:: 0. the e'''~ c 1x1 .'

.r as t- 0 thise an~e,-i, necv ve

rs::irb thlv lo uhbIe th e ze tr ''e'"I& U.

<Lon 5..' n a n u sei T n t

.1)tend to- rt hie Lpi a ji m, x

* C' ~the. bsL Iiffecaent'a n' + at
ot

n ,,::I '. . .e ncv

reot natual

'a be'awio,, e .t' 'e ~ t- -t

a slen ' pa'rah,? a I'e

1:tv c)C li''rrtemn 'l'i r-!e~,

i, eL A atn a' in th

"e p e n,

Whe (D ln' ,0



onsider the characteristia equatio)n

:05 1, z 7: 1 ht ha,, r.een te he ti . t . .~- e I

t. intion (5 .28) as z tends to infinity, toecui vti ent t, the es.Iuto r.

n
=0, and therefore has exactiv n rooc',ts in ie the Ir.oL o-i Thr nun'es

roo,-ts does not depend on z it: othe cio,.man -I,, s:.....c tic t -YtrX
K,[~ is rego tar, the hroeou eqoa,)t,. in

homogAeou

... exactly n independent stQt,.'4 x Fz x p ,~ ... ,(

n'in', to 2~ (x)

~et. --- orthonormailize these soloniut-ns on the lcs--.c,,roiar'yvin

I. .nrma ,i'ze the nn. limensiona,.,test'. %i

Ix (p.,,Kz;, , X.: 2, ,

M)> ?4!-!-

e~n

7:7 Q, in a~te~se 7 .~~ .

* ' ) ae :niepnie T i ccs~c'cc<try co .21x

Th,='e isa ~~t c l..- '

it' 0 .may be a Is' ,cc,'o:n



In the Aiffern> Omit:e i;'xi~ .n~.'

the boundary operatn

- - - r~ alscbu rinirm atr e., A*F,......,

*. t d ifl'ererioe &p 'c''h -- A -jr

<aflition 5. 1. U&0 imV n , Ken::t

:.i -codijtjorj i~ti s a' s'' Aneix m -

,' ,! !z t-I t7V-

nr ectien 6we -loi: n. A, nen ,- 1 te -M"-*''--' j~-v

A W sig .ur vixen imp !n- -- X

nA O-* a n- "id A . r

*"-rem -

* - .



heo re 5.3i

flA :ssat sn iec :n this n& 'h_-eu:a; o ; on .n 1 10 aY

, '~t " 1, E II te L,-r n, z= AAO- sircn . t r then ac c:n

tne cause = gL the n f t'-. et n e0 
c'e ~r~ '%- r tv 1A snre

an is Civen 'n ) e' ' -' 9.

et u0: summfa-7 cc the connt -h n art

rA rA m f- i- z~ e, r, to r -

'h i-ev.. .Ai.'r o, fleaize- 1"' '" e a e

'L A ai ee-a e ot e e I- r- e- -i ,,, ed x j a------ e ne ,n
e, th elnec:Ze

- -rc~c i nve-'- ne'-'-P i'

The < -mratr~ - I,
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And z' 0 The matrix M4c') miayl be represented in. a tr

e0

q-1 where e. =e. 4 are analyt:c uczi

q- and . a !.ea.c, trtK 'I

~e0  0

7t turns oat that e,(4') are the coe:?') dents1 a'<e rtas c&rma.c;r

ponding to one of the equations 5.26) . using n)'L ivintsI Ath

ifference approximation and alyngtetciq of'te

.eierstrass preparation theorem s;ee [twe obtain sinme e,:t~rmaLi Ibs 'h e

imgnar-, jart of 1. z'; r' 1I ,,1ts cn C' no'csrrti

siee [2]) may be applies 'icc the mratrix V~ r'

it 'ection 9 we 'inl 1-y nooe a neighbourhod o , te I int %r'l

Zi The inner- coo.rdina-tes z j~' i hr

VI-. I711T r, a' = -, - are in oss ii Sbsection

the block structure of the matr: x L Z K,>, z 1ntc ge in anehbrhm

a poit -I ( ' , ) withhzthe ::.ngoas sa se

0= i considered. The prob Lensri 'u o ic '" '~'

si.oton8 However no,-w T-ne matrix TIK KF) ca-nno-t. he. repreiente i

p Trod)uct ao' mratrices, 1,. -nd , an i there Ti.re the r 'atoi_

'mp' i Iterln the Last subIsection )' 5. 1- ae 'tez a1-

I rl''io W' t- d i coI,';h r'J. rnni (:0 r, T I, i i .

,ren;'rai zatin Dnc , other ifrl uv jl F,' 1s X aun r. Jsi T: ''

h- har ac t e r it c rr()in drir-,.
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6. Preliminary Transformations and He:uit:.

L. Linearization of the difference problem.

The difference operator L(E ,¢) in (5.21), which is a pojyn oo.a of .,
X

9 in Ex, will be written in a form

6. L(Ex,%) = A (C)Fv A (¢) = 0 :r 2r. v
V=O 

v

Here m is defined as in (5.5) and by t we denote henceforth the pai! (,,.

o, considering L(Ex, ) as a matrix polynomial of ,nr.,i a, we in Aiuc S iL-

i zat ion

(6.2) L(F ,%) = iokS) + A. E, i'

where the square matrices AD and A1 of order mn are defined aus i1 1 .,

.he operator L(E ,, ) acts on the ,- pac(e of mn-d i on iA : .

0 , ) (r- ,) ( v

(6.3) u(x) (u ( x )  1 (X) 1I ) x)) , wher, 1 , (, .

The boundary operator 'E ,( C) in (5.,) (13) 1r tlc id by a uxan matr ix
x

11x) Is a solution o1 pruhlwin r,)' .... l ,

.5) u(x) = (u(x),P: (x),...,. ux)i, I ) ,,..)
x x

%
train that u(x) is; a :aolutionl A'f th ro 'I,,

k( = 1xl(

X.~ -~
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:tpj- ed to the mni-d m n ; a Iri v, J c

* !' r 1) r~ o h) Ia rb em ( . wi th :tr: i -arc .x i I.
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oCa degree m. Then L(K,C) W (0) + KA (r) is the linearization Of L(K, ) as
0 1

* described in subsection 2.2. Formula (2.10) is rewritten as

((11 (K r)L(K)F(K) = L(KC)E~ (-i

where the matrices E(K,c) and F(K) (which should not be confused by the shift

operator E xand the grid function F(x)) are defined as in (2.9).

In order to study the behaviour Of K-matrices L(K,r,) and ?,(K,t,) at. infin-

ity introduce

I. (Kr = KL(l/K,C) =KA 0 W + A

and

K r' T(l/K,C) = K(Z-l)1+(

where )= * +

ian imilrlyto (6.11) we have

2 ~KK ~ )and( V (K) Wff ri .. .

ixre on (0h. I () hrJ , 1St 5

-'1sanid degree in (' wit1 Ii Lc oW'- w',~ t.* ~s' 7

inilarly

sfln:ior the iI'<?1



According to assumption 1.1 the matrix C =Aa±I$ icc !Ing ulur for any u. and t .

>erefore, if (z-.i)K = 0, then IL(K,4)I IC/21.I(K+] cos(1/Jy1..cj ,ari~

nrarfl K and C there is a factorization

". 15 ) IE( K , C) I =( Z-1 ) K p( K,)

whiere p(K,c,) is a K-polynomial with coefficients analy-tic in ,. Since

K,'(0,C~l 0, the matrix L (- (K,C) has for any 4 anj eigenvalue Kc 0. I -nc(-,

,(K,4) considered as K-matrix of degree 2 has for any r an eigenvailue K .T c-

r) r e the polynomial p(K,4) is of degree-- "n-2 at most.

.tatement 6.1. The polynomial 1(K,t) is reg-ular for any (n? wihri4

rjj f. Suppose that for some r, )( K ,r ) 7 h.y takillt K nF n'me trxl

L(K,4) =K[(Z-1)l+22, (- cosP/?)coc4 0+

C =A os/2cnp/ + 1B oi. ,:)c~/

.0~ matric C is daigonalizabie

X are real , (Ii cti nct and non zet-(. TIIen

K

re , for c;()me I j 1-1 W( !It

Z-J?? .(i u;~p/o'/'+ r a ~- f r vr pD.
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If cos( /2) $ o, then taking Q = -R we obtain z = i-22, i.e. z )7 real. On the

.ther hand, for W = 0 it follow. that Tm z j 0. If co (</2) 0, then

.1 L'c 2 ((,p/2) with b. 0 0, and therefore z (lepends: on (P. The above contra-JJ

dictIons prove the statement.

For z $ 1 the characteristic equation (6.14) may be written in a form

(.17) K p(K, ) = o

'I.Nd has, generally speaking, 2n-1 finite roots; including the constant root. K

:n order to investigate the infinite spectrum of L(K,() we consider the charac-

10'rlstic equation

t. . I,5) KK ) I K - - (K,r)j = K ' . (=,i) = 0K

K K L( 1/( /j, J i I L( I/
=Ir'(.r) :]'-L(L/e,,)! eIL /o • (s< -LK, (i1/ ,t)).

,t ntf UV

( ) (K , = K n- I,/K

.- olynomial of degree at most 2n-2 we rewrite epruation (6.18) for 7 $ I in a

Equation (6.1 ) ha; a constant root o = of r.'W] ily St lat (n-;),4

': '. hence L (K,) has an eirenal ue K : K of the arn,(. mulIc nl viiy. tihe 111i,

-II root, (counted acrord ir to their mJltip1icity) ,' s, t en I .l' ' ,.thr

. he zero root (A' (6.1)) i: equal to Pn1.

:'. n .nd ny et ( = 14,r) with Ar, ,- r ,' ,, , r willi 1

;. I [.nd any0 2. T'n qa.Ir )h:i ' i

A _ d.,.' .- c



Proof. Suppose that K = e i pis a root of equation (6.r(). Plhe.n (61)3mliefs

that z = 1-2X.i(i Cos ( P/2)coo',( /P)+X. for rome j e i r -prv~'

he amplification matrix G((P, ). It' zj 1, ,tatemen', ',.i 3mp it,: thait i' a

(p =O,T mod 2Tr.

attement 6.3 . For r, = O= (0),I ) equat ion (6.17y) hlas a 1-oot K 1 of MU-,ti-

1 ,iisty n-1 and, besides the s imple root K =0, another r.-I f in)te ro :w) h

sof.Let (0, z ), z $ 1. Then

nn
=,Kr T O I((g<-]),K ,) K(T-h, K7 K+.I-1 ) v ,

* ,t J

r~:t ~orzro K~ 0. Mloreover', a ci cdintf to 0 1i :1 1

* ,(riH-I )/, and tfiie tel of a. 1i'tI ~.

* 1s ta*artI 24 5. : 7 w J

0). < 2 4, )7 ='3., .4 -.+

.. r~.=, t~I.3~ Io.~,= f '~c: 1. 7!j- 1'. +s:



The latr ix K. C :, ) irty i i

Sare roots of the e quatioan k(i;,,) .TI ,ru:

c onst. iP a,1

~K(7-1 ),We drn frn V

It, II(), j 7

r 7 1 K, C,)tV- ~ ze



Cons-ider now the K-miatrix IT,.L ' :0 fli( o.. .

1A K K i +1cw L

re ,'iiar fo r F Tf an d Tc ( KT ,) I 1'' 1Ko ,.

ti'e<n for any ( F , j -'i . I'W- m'1 0a'M ' -i ,(KJ

inc 1 ,cot ion 2. Acco~rdinu t.( o ma Iioe ii t-- rin qp at1

e cnipenents - are tomeuenc'ous pol (sior I A 01f ' iflf'e det'l('('i

,0 f }k , (t,L} ti 4) 0 , t , I" . t -4ff:,- :: !.

'(e. ~ a, ) coriid(':jd '., "I f 'l"I a j-, v'- n

>ttniiin )f T~J). Tf'r Lj( rIp

pa lri'Ic i b ii,f It-r: (p i'

T I



'I

wet',', as i n subsection 2 .2, we denotf F 1; , p

Farx1(K). Then (P (K,C) is a r-in uL r root function n1 tntf matrix c,

00

-nua igenspace of thle -ingu at'r aLtri X P') K F f' u ter 06.C, .(0(

1' i K n K 13 (n-l)/2+n-i. tB-ncr- tie vercou()CA)tiOtrofot-

niot vanish for any K and F -, , modr Ps ,T wr tan ron am

F1dim V (0 = (n 71 '' + M let I' ~ T O 1[)' 7
0

in obvious that V 11( ) =Ker A and (IT 11r F, whe-re 1; rlmxn!r. m'It c 7

'mnd i aire defined as in sobrest ion 5.1

We hutli -1 !ii -a e .1y orm' 1),,.......t i

'1'and indeleridlentlos f, os 1ri],1 for o 4' ; t

Ft ,T Mod OnT. Namely, by rrrrrw r- > m ~ rran(' n,) tr t r':xe;'

A 'si determinle
................. n- I/

K +

ly7 = cr C/u-t i-... t-. ., .. 't.

*~~~~~~ +~t* -- i ; Q-. . :,,



TT n d ',, ( 1,,

V,)

+L (4)+ 
I

t i w t h a t 1 h - v e c t o r , i : , n+

.;p itj7 K e r l:1.ef
+ e'r A

it, toll T

al)



ne 'lbor I the -"A a

v K~~i have j~# c t hat the 7Illv-.:' tat il.<1 tr n.>

:sr''fze enceforthi we reiti t cr'I 'oteCe7

- . Lock itru(,ture at' th~e K-matre X .'e()Teir thie prb

Con sider the characteri ,t: p , 17 ittt esi'

scan write it in a form

K~ K - cIt 1 y,<1'

'tIithe different r.rtv c) ejr' _it mui WI:I

wi m ultsv", 1-

Io[1 7 1.



..ldet- the equatinnr. ,f,' >,,.-.< .nn

c-f anard (of deu'r'ee i-~ I i1: rc,~Q. I + d~KT

* ., t-he lanu i ,I-tIa:K)I : r.-

w e>:

< ~ '.C z

-c-A ea rt > i........ ~ t-
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These projectors are obviously not defined for z = 1.

Let us denote by (Kj), j = 0,1,...,t, a small circular neighbourhcod of

the point K. containing the contour FY, and by O( (K)) - the space of vector

functions (P(K)ECm n analytic in Q(Kj). We suppose that all these neighbourhoods

together with the set Q(K.) obtained from R(K 0 ) by the mapping K - 1/K are

mutually disjoint. Using equivalence (6.11) we can replace the projector P ( )

by an operator Q.( ) :O(Q(Kj)) (5
mn given by

(7.4) Q( )(p = (2Ti) -1  F(K)(L-I(K, ))I(mI)n)W(K)dK
j

Then the images of Q.(C) and P.( ) coincide when z # 1.

Denote E(Kj, 0 ) = (K)x2( 0 ). Considering the factorization in (6.20)

we obtain that sI and s2 are analytic functions of K and C in P(K, 0 ), and

(7.5) sI 2(z-l)/(K+l)cos(/2)J + O(z-1)2 , s2  -(K+l)cos(/2) + O(z-l).

Let us consider the most difficult case q(1) 0, qj2) 4 0. Since

IsI + C(K, )I %s p 0 (ci,s,s) and p0(a,s,0) 
= p0 (aB,s2 ) = 0 for K = Kj,

C 0 cotit follows that s = 0 and s = -s2 (KPjO 0 ) # 0 are eigenvaiues of the

matrix C(Kjc 0 ) and the eigenvalue s = 0 is of some multiplicity p > I. As

in lemma 3.4 there is some nxn matrix D(K, ) analytic and invertible for

KEO(K ) and = (,l)EQ( 0 ), such that

(7.6) D-1 (K,)C(K,E)D(K,E) = diag(N0(KE),Nl(K,&),N2(K,&)),

where
01 0 ... 0

00 1 ... 0

(7.7) N (K,E) =
0

0 e1 e2 ep1
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Here ek = ek(K,C), k = 1,...,p-l, are analytic functions of K,& with

ek(Kj,%) = 0, the matrix N1(KjE 0 ) has the eigenvalue -s2 (Ki,. 0 )

and the eigenvalues of the matrix N2 (Kj, 0 ) are different from C

and -s2 (Kisc 0 ). We may also assume that the first column of the matrix D(K,E)

is equal to .0 (a,O) - the singular root function of the singular K-matrix

C(K, ) = Aa+BO. It follows from (6.20) and (7.6) that

(7.8) D-1 LD =-(1/2)'diag(s2 I+Nos 1 I+Nl,(s1 I+N2)(s2I+N2 ))'diag(s1 I+N0 ,s21+NlI)

For the sake of brevity we omitted the arguments K and C in the above matrices.

Since the first matrix on the right hand side of (7.8) is invertible, we may

replace the operator Qj(c) by a new one, which is denoted by the same letter

(7.9) Qji(O)p = (2ni) - I  F(K) [D(K,&) "diag( ( Sl +N0)-l, ( s2J+Nl )-i"l)$I(m-.)n ] P(K) dK .

J.
J

Obviously, the operator Q.(c) and the projector P (W) still have the same image

for z # 1. Let us define

(71 ) ^ ( )(P = (27i)-i F(K) [D(K,C) diag((sl1+N0)-l,I ,I)(K ( l n] <)dK

J

(7.11) Q (2) (C)(P = (21i)- 1  F(K)[D(K,E)'diag(Ys2+N)-l,T)$I(m_l n ()d<

F.J

Lemma 7.1. a) For z # 1 the space Im Qj( ) is a direct sum of the spaces

Tm ()(c) and Im Q (2)(C) of dimensions q q(2) and q(2 ) respectively.jm Qj jj

i 1 ~(2) j
b) For z 1 the space Tm () is a regular invariant subspace of the

K-matrix L(K,C) still of the dimension 
q(2)

A"t
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(2(2)c) There is a mnxq (2) matrix valued function Xj (2() analytic in 2(c0 )

whose columns form a basis of Im Q (2)) for any CEU(4O), and there is also a
30

(2) (2) (2)
q xq matrix-valued function Mj analytic in () such that

(2) (2) (2)
(7.12) A ()X ()M ( ) + AO(4)X (4) = 0

where M (2)(c) is a Jordan matrix with the eigenvalue K .
j 0 3

Proof: It follows from (7.9)-(7.11) that

(1) (2)
(7.13) Im Q (C) c IM Q and ImQ ImQ

On the other hand the operators Q4) (l)() and Q(2)(4) are unchanged

it' the unit matrices (except s1 1 and s2 1)in formulas (7.9)-(7.11) are replaced

by zero. But then obviously

QT 14) ( 1.)( ) + Q (2 )(W(7.14) _j 0. ( .j

and also

(7.15) Q l)(C)(Ker Q (2)-(0) Im Q () , (2) Q( )) = IM Q ( )

It follows from (7.13) and (7.14) that

(7.16) In (4) In= im Q( + IM Q () (0-
i j j

In order to prove that the above sum is direct, one should show that the

equality Q(I)()+Q(2)(0)p = 0 implies Q(I)()Qi = Q(2)(4,__ - = 0. By (7.15)

we may replace (9 and (P2 by some ( .such that =()lp Q (4 l and
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-( )(C)D 2 , and hence Qj(C = 0. Let us denote the whole nmxnm

matrices under the integral sign in (7.9)-(7.11) by L0
1 (K,C), L 1 (K,C) and

L1 (K,C) respectively. Then the matrices L0(K,C ) and LI(KC) for Z 1,
2 L0 (,) L(,)orz 1
and the matrix L2 (K, ) for all z are right divisors of the matrix ?(K, ).

Since the integral L0
1 (K,C))(K)dK is zero and L(K,4)L0

1
(K,)cP(K) is

r.

analytic, it follows by lemma 2.4 that L01(K,C) (K) is analytic in Q(Kj).

But then also L 1 (K,)P(K) and L1 (K ,)P(K) are analytic in Q(Kj), and
1' 2 '

therefore QW)() (2)(C)p = 0. The K-matrix L (K ,) for ES2(C ) with

z 0 1, and the K-matrix L2 (K,C) for any cEQ(0) have correspondingly

(2) and q(2) eigenvalues surrounded by the contour F.• Therefore forq.-q.
i) of

z 0 1, according to remark 2.5, the dimensions of Im Qj(l) and of im Q(2 W

(2) ad ) (Note (2)
"r correspondingly q j-(q2 that for j =0, q.-q -

(Jbut q -q(2) (i)+ )
-0 = q0  +1)

in order to prove part (b) of the lemma one should show that for z = I

the matrix L2 (KC) satisfies the conditions of lemma 2.5. it remains only

to verify that any eigenvector (P of L2 (K,) corresponding to an eigenvalue

KEQ(K.) is not a singular eigenvector of L(K,C). But the vector p may be writ-

ten in a form (P = F(K)(D(K, ) I(mI)n ), where the components of the vector

corresponding to the block N are zero. On the other hand the singular eigen-

vector of L(K,4) is given by

P(K,E) = F(K)(D(K,&)0i(m-l)n )'(i,O,...,O)' = FL(K )(P0(0,)

Therefore the above vector p is not proportional to (0(K,F).

Since the operator (2)( (r() 1, of theSic h(oeatr 4 ) is analytic in Q(40) and im ( 5u th
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() dthere is some basis in Im Qj (C), which depends

analytically on 4EQ(40 ). So we define the matrix X (2)() such that its col-
0J

(2) (27(
umns form the above basis. We may assume that Xj ) = Q( 2 )(K), where

"'(K) is a nmxq(2 ) matrix whose columns belong to CD(Q(K)). Then

(OX 2) ( = A,, C)Q()4)(K'Y(K))

(2) (2) (2)The matrix ((C)(KT(K)) may be represented as X. 2(C)M i(C), where the mat-

The~~(2) matrix L
rix ,2))is analytic in Q( 0 ). The matrix L2(K, 0 ) has in (K. ) only the

(2)eigenvalue K =K of multiplicity q . According to lemma 2.5 we may assume

that the columns of X(2) (C) form a regular Jordan sequence of IT,4 0 ) corres-

ponding to the eigenvalue K = K.. In this case the matrix M (0 ) is a Jordan3 JO
matrix with the eigenvalue K . The lemma is completely proved,

The operator Q ()(c), unlike Q (2) (), is not analytic in Q(r ) . However
.11

in the analogy to lemma 3.4 we can prove the following

(1)Lemma 7.2.a) The space in Q. (W) depends analytically on rQ(4 0), i.e. there

exists an mnxql) matrix valued function X(I) analytic in Q(C0), whose

columns form a basis of Tm Q (1 ) for z I and are independent also for

z 1.

b) For C = ( ,l)E() the columns of X (i)(4) belong to the singular eigen-

space f0(C) and for 0 = O they form a singular Jordan chain of length qj

generated by the singular root function 0 (Kj 0 ) at the point K Kj
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c) There is a q. x q1 matrix valued function M I)() analytic in Q(0
3 3 0

such that

(7.17) A() j (OM ) + A =) 0

and the matrix M (C ) is a Jordan cel with the eigenvalue K .j

If j 0, the number in the statement and in the proof of
I(1)

this lemma should be replaced by q)+1.

Proof: The operator Q. (C) in (7.10) may be written in a form

(7.18) O!0 )(()p = (2i) - I l FI(K)D(K, )[(slI+N (K,C))-I(O IT(K)dK

0: (2'o 1 1n-P,I r.
J

where the vector p((K) is now n-dimensional. If we multiply the whole integrand

in (7.18) on the left by L(K,C), we still get an analytic function in Q(KjlO ).

Note that the first column of the matrix FI (K)D(K,&) is the singular root func-%1

uion PO(K,t). Compairing the determinants ISl+C(K,)I = sP 0 (s, , 1 ) and

1slI+N0(K,E)j = Sl(±el±e2 1 ±...±e s - I  for (K, )EO(K,S0), one obtains that

the equation p0(c,0,0) = 0 at the point =0 is equivalent to the equation (1)

eI(K,C O ) = 0. Therefore, as in lemma 3.4, we obtain that eI(K,0) = fI(K)(K-K.)

where f (K ) 0 0. Let us multiply the matrix s11 + N0 (K , ) on the left by mat-

rices E1 , E2, E3 and E4' where E2 = diag(l/S1 ,l,1,...,4) for j 0 and

E2 = diag(K/Sl ,1,l,...,l) for j = 0 and the rest of the matrices are defined as

in lemma 3.4. We arrive at a matrix N0 (K,4), which is analytic in Q(K., ,0 ), theoj

inverse matrix (No(K, )) is analytic for (K,4)EP. xQi(() and for = I we
h~tV0
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(N0(K,;)) - I = diag(f(K)/el(,,l,l,.. ,l) for j 0

(7.19)
(N(K,C)) = diag(f(K)/(Kef(K,r)),l,l,...,i) 

torf = 0.

Therefore (1)

(7.20) (N (K,)) diag((K-K. -  ,i,i .. ,I)
o 0

Let us replace the operator Q (C) in (7.L8) by a new one which is again

denoted by Q(l)():

(7.21) I()(p = (2i) -W I F ()D(, )[ N0(Kr)- IV ]Q0K)aK
0 .n-p

a

'ovf operator 0. (r) depends analytically on c in Q( 4 ). Since the
a 0

.. , ,), k 1,2,3,4, are invertible for z 1, the operators in

.18) and in (7.21) have for z k I the same images, of the dimenion

(1)(c ) = (1] )

7.2qdim(Im q)

.. .' r that the integrand in (7.21) multiplied on tie left, y T(,c,) be-

. rialytic in Q(Kj,0). It follows from (7.19) that for r (,l i th

, Q" ( ) is spanned by the vectors pO(v,c,) with different v and,

therefore, belongs to the space V (). As in lemma 3.14 we determine n-dimen-

s;iorial vector functions

l(K) =((K-K k =~ 0,1,,0 lur R(] I ) k )k( 0 ( _€ ) , , ... ,. ) rol. = , ,...,5q

and t matrix Y(K) built from the column; 0 (K). Then the matrix X is

do Ined by

x ,(
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Since Qj ( K) 1 0 (K O , the columns of x form a
ineQ(0)() k! 3Kk K=Kjii

sin[ular Jordan ch-in of length q. generated by the root funct n

"bOP(K, 0) at the point K = K As already noted in the beginning of this

subsection, the equation p0 (a,8,O) has (n-l)/2 roots K with IKI < 1 and the

same number of roots with IKI>l. Therefore q() < (n-l)/2 and q0() < (n-l)/21.

( 1 ) 

1o

Formula (6.28) implies that q. .< dim V (C) even for j = 0, and according to

lemma 2.1 the columns of X!I (C ) are independent. The neighbourhood Q(%.) ma,
3 0

be chosen so small that the columns of X(1)(C) are independent for any
j0

( 1 ) ( o . ~
andaccording to (7.22), form a basis of the space Im Q. for z 1. The

Last statement of this lemma is proved as in lemma 7.1.

The case j = - requires a separate consideration. Due to the equivalence

in (6.13) formula (7.4) is replaced by

(7.24) Q(C) (2vi)- I  F( )(K)[I m ( Lm-2L ( )(K, ))-i ]s(K)dK .
Jr (m-l)nr0

Transformation (7.6) is replaced by a similar transformation for the n:atr<x

C(-)(K, ). Using (6.23) we change the definition of operators in (79)-(7

(7.25) Q()p = (2ri F()(K)li(mr-i)n(D(K, )

F0

odiag((sII+N0 ) - , (s2 I+N-I) , I)K ]P(K)b.

(7.26) Q(1)() = (2ui)-' f F(-)([(m_1)n,
r0

I 2-ni-diapl 1sI+ 0 )- K , ,I ))](( )(.K
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(7.27) Q (2) (C)(P = (2fi)iY 1  F~() 0((KE

00 ( ")[ (m-l)n

Lemma 7.1 is still valid with the only difference that

(7.28) dim(Tm Q (C)) = ql+ 1 + (m-2)p for z 0 1 and

(7.29)dim(ImQ ()())= q(2 + (m-2)(n-p) for any E(

The presence of the factor K 2-rn in (7.26) makes the investigation of ('')w

more complicated. Applying to the matrix s 11 + N 0(K, C) the same transforma-

tions as in lemma 7.2 for the case j =0, we replace the operator

(11) (1)Q ()by a new one, which is again denoted by Q (4)

(7.30) Q ()p = (2ni)-1 fr F KDKE( - ( 4K,))iL- P)P(K)dK.
OD m 0n-p

00

the operator in (7.26) so that formula (7.28) is still valid. We shall prove

the following

Lemma 7.3.a) There exists an mnx(q l+l-t(m-2)p) matrix valued function

(7-(1)

analytic in 0( ,whosE. columns form a basis of Im (I (() for any 4EQ(4 )
0 0

b) For =(El)EQ(4 0  the coliimns of b(~)4 eionF to tho ;ingular ~gn

-pace ()and for 4 ~ they form a s~ingular Jordan chain of length qj )+m-l00

generated bythe singular root function 6 (K, 0 ) at the p,,)nt ri K
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The columns off 3 (] 2)( 0 ) f orm a regular Jordan :mequeiic or K-inatr:ix r()(K, O

,ccr'esponding to the eigenvaluc K = 0 of this matrix.

,-(l)c) There is a matrix-valued function M ( ) analytic in O( 0) such that

(7.32) A ( )X )M (C) + A ((C)X 0

and the matrix (i)(C) has the only eigenvalue K = 0. According to partition

(7.31) the matrix j()( ) may be written in a form

(733) ()() = [(2,1)() (2,2)( ) J where
(7.34 )(1) = () 0 for z : .

Proof: Let us determine a sequence of n-dimensional vector functions

(1) +m-2-k

=(K) (K ,0,0,...,0) , k = 0,1,...,q +m-21,k

and p-1 sequences

2,k ( K ) = (0,Km+3-k,0,-..,0)I,..., 0,k(K) = (0,0,-3- ,

The sequence of columns {4l,k(K)} form a matrix Y1(K) and the sequences

2,k) . ,p,k(K)} form an nx(p-l) matrix Y2 (K). We define

4.1
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_(')C Ql r( X (12 1 c)(f K)

and

W_ C ,wIW , (W.)

Let us note that the first column of the matrix F(-)(K)D(KF,) is the singular
m "

"oot function (,0( (K,C)). We denote the next p-1 columns of this matrix byv0 •

'
2,j r), 93K,C),...,p (K, ). Obviously, the last columns are regular root

functions of L (K,&,l) of multiplicity m-2 corresponding to K = 0, and the

eigenvectors Hp2 (0,E),o3 (0. ),..,C%(0,C) are independent of the singular, p( (!3 (P P

eitenvector (1 Ia,)). Using (7.0,where qj' should be re,,laced by q(K+i

K. by 0, one obtains that the columns of 'I( ) form a singular Jordan

chain as proposed in part b) of the lemma, and the columns of 'M1

form a regular Jordan sequence of L ((K,%0) corresponding to K = 0. Since
(1) (1)

q ( < (n-l)/2, it follow3 that q + m-1 < (n-l)/2 + m = dim V0 (). According

to lemma 2.1 the columns of ( 0 ) are independent, and lemma 2.2 implies

that also the columns of Xk( 0 )
* are independent. We shall choose the neigh-

bourhood Q( 0) small enough so that the columns of X'. ( ) are independent for

any E( 0 ). It follows then from (7.28) that the columns of X(1) form a

basis of the space Im Q1)( ) (Q(l)(4) is defined by (7o.0) for any CQ(r0 )':.

The matrix M() is obtained as in lemma 7.1. The diagonal form (7.10) of the

matrix (N(K, ))- for z = 1 implies that the columns of X]( ,I) belong Io ib-

space V 0 (&) and the matrices 1(, ) and satisfy (7.3b).

Let us return to the operator 2) in (7.27). Instead of the notation;

(~)
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(2) (2) ~(2) ( nX() and M.2( ) in lemma 7.1 we use for j = the notations X.()) andJ

Denote the whole mnxmn integrand matrix in (7.27) by L21(K,c). Then

the matrix L2 (K,C 0 ) has in Q(K 0 ) the only eigenvalue K 
= 0. The corresponding

eLgenvectors are linear combinations of some of the last n-p columns

0 ,. (0,0) of the matrix "'(0)D(0,C0). According to lemma 2.5 we may

assume tat the clumns of (2)L(K)
assume that the columns of X.2(C ) form a Jordan sequence of L2(K, 0 ) corres-

ponding to the eigenvalue K = 0. We have shown also in lemma 7.3 that the columns

of the matrix (lI2)(O) form a regular Jordan sequence of L (K,0) corres-

ponding to K = 0 with eigenvectors m2 )0,.0),..., , Since the vectorsn ~ ~~( )(O'Y0 the c 0tso . ( O  (

are independent of Q0E cclu s o' (X_

form a regular Jordan sequence of '(b)(K,O 0 ) corresponding to K = 0. Let us

denote

1 ( l,l ,)) M (2 r2 () (2)

X7. X (C)'lX = (l1l>  / ,X)= (0l2 , o , ,l/ ( o, (0,l()

2M(191) (1 2)142'2(C) 0 WL') , M.l2)(,) = (2) ( = 2l))
0 M. Mm (0) Im( 2  (

We can summarize the above results for the case j = - in the following

Lemma 7.4.a) The columns of the matrix X () are analytic vector functions in

2(r0) and form for z 1 1 a basis of the space Im P (p).

For 0 thecol ) ( 0 ) the columns )(C) belong to the singular eigen zace

i() and for =0 they form a singular Jordan chain of length q- +m-i
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generated by the singular root function .00  (i 0) at the point K = 0.

c) The columns of X(2)C 0) form a regular Jordan sequence of L)(K, O ) cor-

responding to K 
= 

0.

d) The matrix M () in (7.35) is analytic in Q(C0) with M (2,1)(Ei) = M(192)(Ell)

0 CO 0l)
- 0 and satisfies the identity

(7.36) Ao()XOD() + A l()x. W)M() = 0

Let us define the following matrix valued functions (we omit the variable ,)

(x) (2)(7.37) X ( ),x j ), j = O,1,...,t; X.l = (Xl,X2 ,.. .,Xt), XF = (XoxF),

X = (Xp,,x)

According to the partition of the matrices X., the matrices XFlXF and X

are also partitioned as

- (1) (2) (1) (2) (1) (2)
(7.38) XFl =  (XF1 , F = ' F

In the same way we define matrices

M = M(1) M(2), M diag(Mi,M2 ,. , t  MFj Fl ,. Mt) , = MO"MF

and the partitions

(7.39) M W $M(2) M = MW(F1 2)
M 1 F1 Fl 'MF =

We shall denote the matrices M.l,') and M(22) also by M 1  and M. respectively.

The finite eigenvalues K., j 0,1,...,t, split up into two groups: the group I

which contains K. with IK.1 < 1 and the group 11 with I] > 1. Then the matrix

.. . .. .



X consists of all the matrices X. with K.EI and Lhe matrix X is defined
I jI J II

analogously. The corresponding partial blocks MI and MII of M are determined

in a natural way. We suppose that the matrices XI, XII and MV MII are also

partitioned

(1) (2) (1) (2)(7.40) X (X ,X ), MI :(M I  OM

and similarly for XII and MII,

Let us denote

(7.41) T = (AIXF, A0 X. )

We shall partition the rows of the inverse matrix T-1 according to the columns

of X and use the similar notations. For example:

matrix (i) corresponds to the matrix (T
1 )(1)

Now we introduce the mnxmn dimensional matrices

(7.42) = (-MF )I and B, = ie(-M )

Using (7.12), (7.17) and (7.36) one obtains the following main identity

(7.43) L(K,C)X( ) = T( )( 0 ( )+KB 1))

Lemma 7.5. a) The matrix X( ) is non singular for z # 1.
-(i) x()(

b) For = (E,l)E(c 0 ) the columns of the matrix (Xll ( ) (c)) together

with the first column of X (1) (0fr ai ftesaeSimilarly,
0 () form a basis of the space0

the columns of the matrix XI(1)(c) together with the first m-i columns of X)( )

form a basis of O0(E).
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c) For = (E,l)E€( CO ) the columns of X(2) (C) are independent of the space

0 (E) and therefore independent of the columns of X (C). Hence, the column.-,

of the matrix X (C) = (x1) (2) are independent.

Proof. Since the columns of Xj( ), j 0,1,...,t,o, form for z # 1 a basi; of

the space Im P (C), the first statement of the lemma follows from the spectral

theory of regular linear A-matrices. As shown in the beginning of this subsec-

tion

q(l) q(l) + (1) n-i
I II

where the sums Z and are taken over j = 0,1,...,t, with Kj belonging rest-
I II

S(1) ()l)
tively to the groups I and II. Then the matrix (XI(l),X ( )) has

()

q(l) + q + m-i = (n-l)/2 + m-i columns. Adding to these columns the first

_(1)
column of X0  we obtain sequence of (n-l)/2+m vectors, which consists at the

0

point C = of singular Jordan chains generated by the singular root functions

( 0(K, 0). Then, according to (6.28) and corollary 2.1, these vectors form a

basis of the space 0( ). If the neighbourhood Q( 0) is small enough, the

statement in the last sentence remains true when C0 is replaced by any

= (C,l)EQ(c0 ). In the same way one proves the second statement of b). Accord-

ing to lemmas 7.1 and 7.4 the columns of X (2) ( 0 ) form a regular Jordan sequence

of the K-matrix L(K, 0 ). By lemma 2.2 these columns are independent of the

singular space 0(C0). Again, if Q(C0) is small enough, the last statement is
true for any =(,)€S(C0).

1 -Denote T-(r) = (z-l)T-l (). The rows of the matrix T-(r) are partition-

ed according to the matrix T-1 (). Analogously to lemma 3.6 we have the

following
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Lemma 7.6 a) The matrix valued functions T-i( ) and (T-1( )(2)) are analytic in

b) The last row of the matrix (T-( o)) I),J - Ol,...,t,w, is non-zero.

Proof. The analyticity of T ( ) follows as in lemma 3.6 from stability of the

Cauchy problem. We should merely replace the functions (pj(X') by

J(K) = IKI- (C)I/IKI-Mj ()I for ljKl < 1

Oj(K) = 1 II-K MF()I-IM (C)- K-Il/II-Kl M ()1 for IK > 1

and

(() = K II-K 1M )I

and integrate X(C)(B 0(r,)+KB1 ( )) P (K)T-() around the unit circle IKI = 1.

Let c= ( ,J)EO( 0 ). As in lemma 3.6 we have

Im T-(<) Ker T( )•

Let us fix some K different from the eigenvalues of the K-matrix B0 (r)+KB 1 () for

any 4 E( 0). Then we obtain from (7.43)

T(C) = L,) B 0()+KB) 1

Let vEKerT() and u O (0(+ kl( ))-iv. We suppose that the components of the vec-

tors u and v are partitioned according to the columns of X(C). The kernel of L(KC)

consists of vectors = = F1 (K)p , where (pKerL(K,l) = Ker(C'(s 2 I+C)). Since the

matrix s21+C is invertible at the point (K,4) and the kernel of C(KI) is spanned by

PO (a,a), we obtain that the above vector ( is proportional to 0 (KC)EV 0 (0). There-

fore X(r U 0 ( ). Since the columns of X(1)() belong to 0(0 and those of X (2) W

are independent of v0( ), we conclude that u
(2 ) = 0. But

KI-M2)(0) 0

v0(2) = { 0 -KM 2 ( )+I u(2) : 0
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ndhne 1 (2) =0. Therefore (T-1  (2) is arnlytic in 2( )

Part b) of the lemnma is proved as in lemma 26

7.2. Proof of theorems 5.1-5.3 in the neighbourhood 2r )

Let us consider problem (6.6) in the neighbourhood 0( ) of the point

O =(Eol),where E 0 ,n mod 27. We remove the symbol ',. from 11 P.nd F and

write

(A) L(E,7 )u(x) F(x), x = vAx, v =0,1,.

(7.44h)

(B) (C)u(0) = g

Denote v(x) = X- (C)u(x), G(x) = T- (l)F(x). We suppose that the components

of the vectors v(x) and G(x) are partitioned according to the columns of X(C)

and use the natural notations for the partial vectors. Problem (7.44) may now

be written as

(A) (E ..MP(C))vF(x) =G,(x)

(7.145) (B) (I-M( )E )v.(x) = 0(x)

(C) No~x1 (Ov )v(0) + S(O)X11 ()v IT (0) + ()X.(O~v.(0) g

Define syimetrizers

R F(;) 0 ( R R11 (J with R I -cT , R1 IT )1

where c is a positive constant, and

R( = T.

We nay assume that

M~M (M (1-6)1, M ( )M.( ) (1-6)1 and M11 (OM 1 1~ W (1+6)1.
I I 1 I

*)oee footnote in subsection 3.2'.
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Then the symmetrizers RF () and R (C) satisfy

.,".h6) 4~()RF(4)MF(C)-RF(C) 61 and H(4)-M(4)R(,)M'r) > 61.

Here, as usual, we denote by 6 different positive constants.

Let us apply to equation (,.45) (A) the generalized energy method with

"Ie symmetrizer RF. Namely, multiplying equation (7.45) (A) on the left by

R.(-E -M F)VF in the sense of' the scalar product in Z2 (x) and taking real part

one obtains

<(NI.yMFR F)VF'vY> + vF'(()R~vF(0)Ax -Re <PF(Fx+MF)vF"F>.

N w it follows easily that

47 ~ 6.11 F~) + (IvT1 (0)V-_civ1 ()'j) Ax K -4G F

. ]rilarly, multiplying equation (7.F ) (?) on the left by !H (l+ME )v_ and
X

,t;,±ng real part we have

* *

<(R-MR M )ExV.,ExV-> + v.(O)R v.(O)Ax = Fie<H (T+MF x )v ,>

' :i therefore

. 6U Vi 1 + 1v. ( U)f')Ax K)iP, -i.

2 2

Alrno (7.h7) and (7.1;8) and uc;ing that j1v U 1ExV.11 + lv (o)) Ax we arrive

49Laq) 6HIIv + (IvT! (O) + I V-(( '-c v 1 (0) 1 V )P) x :, K JIG '.

*.emma 7.7. The condition (UKC) in the neighitourhood l( ) i!; equ ivalent tu,

'I,, condition det ( 0)XI (,O) # 0.

r .... f: The general solution of equation (7.114) (A) for F 0 U; given by

% 4
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(x ,t) = ( (X , ),( 2(x , ),. . . ,(P(x ,))v (0) = x ()M()v (0)

The nm-dimensional column vectors (o (0,C), j = 1,2,...,n, form the matrix

X (c) anm are independent and analytic in Q(C0 ). Therefore the matrix N( ,z)

in (5.30) may be identified with ()X (r) . So if det N( ,z) > 6 for any

EQ(r 0 ) with Ill > 1,then det '"(co)X (CO) $0. Choosing Q(cO ) small enough,

we obtain that the converse in also true.

Now we are able to prove estimate (6.7) with Izo) = 1. Let (UKC)

be satisfied, i.e. det ( 0 )X ( ) # 0. Then it follows from (7.45) (C) that

(7.50) Iv1(0)1 . K((vIi(0)I + Iv.(O)f + IgI).

Hy setting the constant c in (7.49) small enough one obtains

2 2

11vl 11 K(JJc;G + IgI2Ax)
2

2ince 1112 = 1IT- (C)Fj2 < KILFI and = ilX(rv ii KIIvtI we derive

an estimate Iz-iI

.31)Hull 2  K( 2 + Ax)

which is obviously stronger than (6.') for Iz01 = 1.

Let us now prove in Q(%0) the sufficiency part of theorem 5.3. We define

the operator P in (6.9) for 4E(0) as equal to the projector i( ) in (6.30).

introduce grid vector functions

= (1),v(2) = (( 1)v(1) ()), and = ) ((2) - ( ) ) (2)),
v (V ,v )' =v ) G (C ,(;a)d ((z- ),G

Then equations (7.45) (A), (B) may be written as
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(A) (Ex-}MF)vF(x) = GFCX)

(7.52)

(B) (I-M()Ex )v(x) = G(x)

where

M(l)(W M (1,2)W(-).( '

( :2,1)&()/(zl) M (22) (W)

(2)

According to part d) of lemma 7.h the matrix M 2,l)(c)/(z-l) is analytic in

The matrix M (C) has the same eigenvalues as M (C). Hence, there

exists a summetrizer R (C) such that

w()-M~R()()~6 and R.(C) > I

Applying to equations (7.52) the generalized energy method with the symmetriz-

ers RF( and RB(r), we get in analogy to (7.49) an estimate

^ 2

(7-53) 6 1 vvv 1), Y 112{r.53)611v,2 + (iv1 z(o) 2Iv 1(o)1 -clv1 () 2)x K( JIICI).

According to condition 5.2, dim 0 = (n+l)/2. Since the (n+l)/2

columns of the matrix S( ,I)X(I)(,1) are independent, they form a basis of
I

the space (,i)v0 (). Then using (UKC) we obtain as in (7.50) an estimate

(7.54) Ivi(o)I < K(Ivl 1 (o)l 2 + v(o)1 + IFIe)

Choosing the constant r in (7.53) smail enough we arrive at

I (0) 1 K ( 11 1; . + I



bt -1
11 (G ii (1 (T r

(2 2A -i2A

Iv(OI~ K( Fl 2
+jjA

* i e

() % (2) (2)(01 2,lP(~)(0f it,~~ 1) (4v (o) + P)X (4)v ()2 Kv()

1L 1

Adding the last inequality to .L) and replacing 1 by we arrive

!Jn-illy at estimate (6.9).

(Thrsider problem (7.244) with F = 0 and let the e,.timate

* i11I K IgI Ax

1111 In HI Iz 1I=l%x Witt, a ( aJVviOucly, eltinate ('T.')') V

~tIcr tan ect Aiwte .dt :;Ial ,iicow thiat (UKC ) isc then cat jcfied in

In-i'ied, it' )xr (Xr,, 'v K)) Fi) nd v,(0) -- 0, we define for

, EQ( a. homov' neu: :7n lut on )f equat ici (7 .4',) (A), (B) as

11x u(XV,:I) 7-VP1~( )v (0).

IV - w
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Taking z = 1 + 2a0 Ax and Ax tending to zero, we obtain that v (0) = 0.

To accomplish the proof of theorem 5.3 one should show that if estimate

(6.9) is fulfilled, then dim (%(CO0 () = (n+l)/2. Consider problem (7.44)

with g = 0. It follows from (7.52) that

(0 -V-l

v() : - I MI (o)GII(x) and v (0) M()G (my)
v=0 v=0

For fixed FEL 2 (x) we consider vii(0) and v (0) as functions of C61(CO
)

^0

and denote them by vII (0,) and v (0, ). Since the matrix ( )X (O) is

invertible, the function v1 (0,0) may be computed with the aid of the

I
.uundary condition (7.145) (C). Then v I(0,C) and (z-l)v, (0,C) depend

I II
analytically o)The v (v (O , ()( 0 is o

(7.56) (~( %), (0o) =Q(F) Y (I)
(VI 00V= 0 M (~

0 -

LM(1) ( );-( (I)
.11 0011 F(XV

We consider Q as a linear operator acting on the space Z2 (x) of grid vector

functions with values in Tml+(n-)/2 Analogously to lemma 3.7 we have the

following

Lemma 7.8. The operator Q is an epimorphism.

Proof: The space Im Q is obviously an invariant space of the matrix (M ( )

( M )(lO) containing the image of the operatorS 0
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() ())(11[-MI ( 0) '- ( 0 )( - ( 0 )  ]

(I) 0)-i )IT

Since the matrix (M () consists of matrices (M.W (C ))-I with different~J
- 1

eigenvalues K- , the space ImQ is a direct sum of invariant subspaces of mat-

rices (M (0))-, M (CO ) containing respectively the images ofi 00

i ', of .( '. Acordin: to par-t b) of !omo '(.6 the

La:t row of the matrices i ( " .,: { U- is non-zero. Rocal-

ling that MW(i ) is a Jordan cell, one can prove now the lemma without diffi-
j 0

culties.

Let us write the boundary condition (7.L45) (C) in the form

( ) (1 )( )$ (1 )( O + ( ) (2 ) , ,(2 )(
S(OX (0 (0,C) + ~(OX v 0,C).(z-i) = 0

Suppose that ) ())X ( I) W(0,4 ) 0 0. Then _(2) ( ) = o ((z-I) I (we de-

note f = 0 (g) if 0 < 6 . If/gf -< K). Since

?(W)u(O) = ( )(X (1)()V (1)(Ol+X (2) ()v (2)(0,))

0() * (2) -1

o(v (0,0) ) + 0 (v (0,)) = ((z-]Y-),

taking z-1 positive we arrive at a contradiction with the estimate

1,2 Iz 2
IN()u(O) Ax < K -IF 1i.

Therefore S( o)X(1) (O)v() (OCo) 0. For suitable FEk 2 (x) according to lemma

7.,' we may obtain any value of the vector (v(IT (O,0) (0, O) . Since

the columns of X (1C O ) span the space V0(0 ), the space ,(C0) 0(( )) is

spanned by (n+l)/2 independent columns of the matrix'>(x Thu.,-,, theom

5.3 is proved locally in Q( O) .

- ,30
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8. The neighbourhood of the point 0  (0).

Let us introduce the notations

(8.1) =, r /r, z' = (z-l)/r, ' = ( ',z',r), K' (K-1)/r

By C' = (',z ,O ) we denote a point with real coordinate E and complex z

satisfying Rez' 1 0 and 1. Then denotes a neighbourhood of

in the three dimensional complex space T3 of points C' = (E',z',r), and

R (() consists of points 'EQ(C) with real C',positive r and complex z' such

that II = ll+rz'l > 1. By Q(0) we denote a neighbourhood of the point

(0 = (0,1) in the two-dimensional complex space of pairs C = ( ,z) and QR( O)

consists of points E0(0 ) with real and jzI>l. To any point

= (C',z',r)E[ 3 and any complex K' correspond C (&,z) and K given by

(8.2) '-r, z = l+rz', K = l+rK'

We consider problem (6.6) locally in a neighbourhood 2(C'). Then one can sel-
0

ect a finite number of such neighbourhoods, which cover some neighbourhood

R (C0).

1 Block structure of the K-matrix L(K, ) in a neighbourhood Q(,')
0

According to statement 6.3 the characteristic equation Kp(K O 0 0 has a

root K'= 1 of multiplicity n-l, a simple root K = 0, and n-i different roots

K,] = (a +i/(a j-1) for j = 2,3,...,n. Equation (6.19) has for any CEQ( 0) a

root K = 0 of multiplicity (m-2)n+l. Therefore K = is an eigenvalue of

I,(K,C) of the above multiplicity. In order to describe the roots K near

K= 1 as c tends to C we introduce K'-matrices

C(Kt)/r Ac'+B', where

(. ) ci' ci'(K' , ') K'cos(E/2), a' =
'(K', ') i(K+l)sin(<'/?)/r,

w - - -r.-1
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= L(K, )/r Z'K + C'(K',t') -- co'7( 12)- '(

2

The values of C and < in (8.3) are given by (8.2). Obviously L'(K',C') is a

matrix polynomial in K t of degree 2 depending analytically on the parameter

4'E0( '). For r = 0 we have

(5.4) C'(K',$') = AK' + Bit' and L'(K', ') = z' +

Using factorization (6.20) one obtains

(8.5) L'(K', ') = -(l/2)(sjI+C')(s 21+C)

where s' = s /r depends analytically on K' and C', and s2 depends analytically
112

n K and CEP(0). From (7.5) we get

s2K + 0(=2)1
1 Z(l)C0(/2) +~

and for r = 0, s1I = z' and s2 -2.

The characteristic equation IL'(K',C')j = 0 in neighbourhood of the point

K = 1, = 0 is equivalent to the equation IsjI+C'I = = 0

which in turn is equivalent for z' 1 0 to the equation

(8.6) p0(a',8' ' : 0

For C' = C' the above equation has a form

,

'2. (~(K , 1' 7' =



Fpr

and is regular according to K' also for z' 0.

The last equation was investigated in subsection 3.1. If z' 0 or

Rez' 4 0, it has (n-l)/2 roots with Re K' > 0 and the same number of roots

with Re K' < 0. Therefore imaginary roots <' are possible in equation (8.7) only
Cor Rez' = z0 z 0. It is worthwhile to note here that if 0, the roots

K' are non-zero since z' # 0. Let K'K' ... K' be the different roots of equa-

-on (8.7) of multiplicities q ' 2 '' We select small neighbourhoods

Q( ') and R(C0) such that for any (U'E(C') the corresponding point ( belongs

to Q(C0). Denote by o(K%) a small neighbourhood of a point K , J=l,2,...,t,

and by Q(K ) a small neighbourhood of a point Kk9 k = 0,2,3,4,...,n. In the

nei ;bourhoods 2(K and we select correspondingly circular contours r'

around K' and F around Kk" Then 0 (K') and Q (K ) are neighbourhoods bounded by
k kJ 0k

r' and F respectilrely. The neighbourhoods 2(C') and Q(C ) are supposed to bek 0 0

inall enough so that any root K of equation (8.6) belongs for C'EO(') to

:cme R0 (K) and the remaining n-I eigenvalues K of L(K,C) belong for

cC( 0 ) to the neighbourhoods Q O(K ). For z I, C'EQ('), we define as in

T'1.3) mutually orthogonal projectors

.1 K'Er!

(8.3)

P (C) (2 )- -(,C) jC)dr , k= 0,2,3,...,n

KEF

p ()= 2 i -  (L (K,C)) A (C)dK.
00KEF 0()(

that

..... .+ ,,, , + =- .

k= . . ,
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The projectors P. (W,) may be written in a form

p (1)(,)= (2 i)-I i F()[L-I(K , I(m E(K, )AI(C)rdK'

.3

(8.9)
(2ni)-i F(K)[L'(K' 'C')-IEDO(m-I)n ]E(K'C)AI(C)dK'

.3
J

Now it is obvious that the projectors P(W) depend analytically on ' forJz'¢O.
z' 0.

Lemma 8.1. The projectors Pk( ) k 2,3,... ,n, depend analytically on Q(C 0).

Proof: The matrix C(K,E 0 ) is simply (K-l)A. Therefore there exists a matrix

D(i, ) invertible and analytic in the neighbourhood Q (Kk )x o( 0 ) such that

(8.10) D-1I(K,E)C(K, )D(K, ) 
= diag(O,c2,c3, ... c n )

where the eigenvalues c. = c.(K,$), i 2,3,... ,n, depend analytically on K and1 2.

, and c i(K,) (K-l)a.. Then

.) D-1 (K, )L-(K,c)D(K,E) = diag[K(z-l), £(c 2 ,C,), ... n,,

where the polynomial i(cKr) is defined as in subsection 6.2. For z # 1 all

the diagonal elements in (8.11) except Z(ck,K,)- are analytic in Q(K k) as

functions of K, and (c kK,r) - I is analytic in F x Q( ) as a function of K and

i. Therefore

P C) (21i)-
(

k( = F]- (, )[ D(K{ d a ( , , . ( , )! O , ) - (<



and the analyticitv of Pk () in S(C0 ) is proved.

The projectors P0 (c) and P () are not analytic as z tends to one. How-

ever, the following lemma holds;

lemma 8.2.a) There exist matrix valued functions X0 ( ) and X (C) = (X

x(2) ()) analytic in Q( , the columns of which aro independent for any

-EQ( 0 ) and form for z # 1 a basis of thespaces Im P0 (C) and Im P ( ) respec-

tively. b) X0 () is one column matrix and consists of the singular eigen-0
% (1)

vector p0 (0,E). The columns of X 1)(C,z) form a singular Jordan chain of

length m-i corresponding to the eigenvalue K = 0 of L (K,&,l); this chain is

generated by the singular root function n (K)0( at the point K = 0.

c) The columns of the matrix (X0 (Oz), X (0,z)) form a basis of the space

Ker A, where A = diag(A,A,...,A). The columns of X (2)C0 ) form a basis of the

space Im diag(0,0,A,A,...,A) and are independent of the space Ker P(0

d) There are matrix valued functions M0 (C) _ 0 and M (C) = M(I) (Ow (2) ()

+0

A 1 (OX0 (OM 0 (0) + A ~0 (X = 0

(8.12)

A+ kj.)x( +%= 0

and M.(C) is a Jordan matrix with eigenvalue K = 0.

P'roof: We consider only the case k 
= - since the case k = 0 is analogous to

the first one for m = 2. As in (8.10), (8.11) we have a similarity trans-

formation of the matrices C(-) (K,) and L(-) (K,) - I in the neighbourhood

Q (K0 )x(C0 ). Let us partition the corresponding matrix D(K,C)=(D (K, ),D2(K,E)),

where D (K, ) is the first column and D2(K,&) consists of the remaining n-i col-

umns of D(K,C). We may suppose that D1 (K, ) = W0 (- (K,),8(K, )) so that
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F( 0 The columns of D2 (K,O) are the eigenvectors of A

corresponding to the non-zero eigenvalues a2 ,a3 ,. ,a n  and span the space

Im A. We may assume that the matrix D2 (K,O) does not depend on K.

There is a following factorization

(K -2L( )(K,C))-I= [D(K,E)diag(Kl
-m,K2 -m,. . K.

•[D(K,E)diag(z-l,£(c2 , K 1 ) ,...,((cnl$)] -K

where the second matrix in the product is analytic in Q(K 0 ) for z j 1.

Hence for z 0 1 the projector P() may be replaced by an operator

(8.13) Q.(O)

-m2-m, 2-m

(27i)
- I  

F()()[D(KE)diag(K ,K ,...,K )l(ml P(K)dK

which acts on the space OQ(K 0)) with values in C The operator Q (C) de-

pends only on E, is analytic in Q(0) and has for z 1 1 the same image as

P (c). Let us define operators

(8.14) Q(1)( ) = (2i)-i F(-)(K)[D(K,E)diag(Klm,l,1,. .. l)*l(m-l)n]P(K)IK

F0

(2Ti)-i l F(-)()D (K, )Kl -m(P(i)(K)dK

0

and

(8.15) Q(2) F(c)()[D( ,)diag(l,2- ,...,K2-)I(m )n]()dK

0

0
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where ( (K) is the first component of p(K) and p (2)() consists of the next
n-I components of (K). Obviously Q ( ) Q )(I ) + Q(2) for any cEQ( 0 ) , and

as in lemma 7.1 one can prove that for z / 1 the space Tm Q (C) is the direct sum

of the spces Tm Q ()(W and Im Q' (r) of dimensions m-l and (m-2)(n-1) respec-

tively. Since Q (), Q ()(d and Q (2)() do not depend on z, the above statement

is also true for z=l. Taking p (1)() in (8.14) equal correspondingly tom- Xm2()
K m-!, m-_ ... ,K,l we obtain the columns of the matrix Xi (), which form a Jor-

dan chain of length m-i generated by the singular root function 0 at

the point K=0. These columns obviously form a basis of Im Q ()(W. Since for ;0

(PO,6) = P0 (a,O)EKerA, it is easy to show that

Im QI) (O,z) = Ker diag(I,A,A,...,A).

"imilarly, taking (2)(K) in (8.15) equal to

m-2-k m-2-k m-2-k
(K ,0,...,0)', (0,K 0...,0)',...,(0,o,...,K ), where k=1,2,...,m-,

we obtain (m-2)(n-l) columns of the matrix X (2)(C), which form a basis of the

(2). (1) (2)space Im Q. 2(0. Thus, the columns of X ) = (Xl (),X ()) form a basis

of the space Im Q ( ) for any CER(c0) and, therefore, also a basis of Im P_(C)

for z $ 1. Since the vector X (0,z) = 0(0,0) spans the space
0 0P

Ker diag(A,I,I,...,I), the columns of (X 0(0,z),X (1) (0,z)) form a basis of

(2) ,(KC cores
Ker A. The columns of X2 () form a Jordan sequence of L((K, ) corres-

ponding to the eigenvalue K=0. This Jordan sequence is generated by n-i root

functions, which are columns of the matrix F ) (K)D2 (K, ). Since the columns of

D2 (K,0) form a basis of Im A and do not depend on K, it is easy to show that the

columns of X(2) (C) form a basis of the space Im diag(0,0,A,A,...,A). Let us

0-
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recall that Ker 1(0) = Fl(1)V 0+Ker 3. If a vector W (rl,02 ,... (m)' (here

P 42,. m are n-dimensional vectors) belongs to Ker %(O)NfIm diag(O,O,A,A,...,A),

then the "component vectors" I and '2 are zero and therefore (PKer A. Since

Ker AnIm A = 0, it follows that p = 0, so that part c) of the lemma is also proved.

Since for any CEP (%0) the matrices X( C) and X(2)(W consist of Jordan chains,

the matrix MW () is a single Jordan cell and M (2) W is a direct sum of n-1

Jordan cells of order m-2 with the eigenvalue K=
0

. The identities in (8.12) fol-

low now immediately.

Let us now study the projectors W ). Let z' 0. Then (l)(C) is ana-
i) TW e pro-

lytic in Q(c) and the image of P (1)(,) has a constant dimension q . The pro-
(i) (1(), (1( )

jector Pl) (C') may be replaced by an operator Qj ( 0 - Cm given by

( W )(,) = (2i)-i F,(K)L,(Kt ,,)-lP(K,)dK'
)j

For r 0 0 the vector function T(K') depends analytically also on K= l+rK' in a

neighbourhood of the point l+rKj , and therefore the images of Q.)( ' and I.' (I,'

-oincide. L'ince Q.() ) ir analytic in 2( ) and for r = 0 obviously

Im 0(I)(I') _ im p(l)( ,), it follows that Im Q W)( ') = IM PM1) (') for any ('EQ(Cj 1,.

Therefore one can define in TM ( ) a basis, which depenO-h analytically on c'

,and whose vectors are column onf a ratrix XW (r') F'. n by

(1)( v o )( ,)(T(K,))

where (K') is a nxq W matrix analytic in 2c). Since the integrand in (8.16)

being multiplied on the left by L(K,) becomes an analytic function in Q( '9, we

obtain
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(1) (1) 1

AI( )Q~i)( ')(K (K')) A A( )X (i

Fxu)rcssing 0( I ) X)') a"(1) ('')Mj'), where
Q. (4')(K'T(K')) in the basis X (c') asX

V'(r'! is analytic in N( ), we arrive at the identity

(17 )()M ( )+Ao()X ( ')=0, where M(.l) (C'=I+r )

The characteristic equation ()I-M (')I = Ir(K'I-M 3 (C'))I = 0 has for r#O

the same K'-roots in Q(K') as equation (8.6). It follows from the continuity

considerations that the equations Ii'I-M 3(W')I and (8.6) are equivalent in

Q(K!) also for r = 0, and therefore the matrix M'( ') has the eigenvalue K!
J jO 3

of multiplicity q(l)

In the next subsection we shall need the following

Lemma 8.3. Let Re z; = 0, z' 1 0 and Re K! = 0. Then the matrix M3( ;) has on-
0 0 3 J

iy one eigenveetor 'corresponding to the eigenvalue K.

Proof: The operator QI(c,) for C' may be written in a form

Q( )( p = (21Ti)-i F (1) L,(K',, )-I (JO ,)dK,

0 r1

Let us denote by Q3(cO) the operator from O(Q(K )) to Cn represented by the

above integral. Recall that L'(K', ;) = zo'l + AK' + Bi%) is a linear regular

K-matrix. From the strict hyperbolicity we conclude that this matrix has only

one eigenvector corresponding to the eigenvalue K' K'. Let v be an eigen-
vecto ofj(i) ( ,(f,)) - QII) ( (K,))M' we obtain

vector of M'( ;). By the equality Qj

(K'(K'-K )'(K')v) = 0. But then also Q3((K'-K)(K')v) = 0. From (2.15) we geti j

for any 0O(S(K')) an identity

•J
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L' (K 'Q(wO(K') = AQ ( (K-K')P( K')

Therefore Q'C') = Q'UT(K'))V is an eigenvector of L'(K',C ) corresponding

(1)to the eigenvalue ' = K. Let us note that since the columns of Q ('(K')) are

independent, so are the columns of Q'(P(K')). Hence the vector v is unique,

and the lenira is proved.

Let us now investigate the projectors P (1 ) in Q( 6) when z' 0.

Lemma 8.4. a) There exists a matrix valued function X W)(c'), J = 1,2,...,t,

analytic in ) the columns of which are independent for any r'EQ(26) and

(1)(C)we '#O
form a basis of Im P( W ) when zr 1 0.

b) For z' =0 the columnrof X)(C ' ) belong to Ker P(E) (where E = E'.r)

0 )

and X! i)( ) FI(l)X( ), where the columns of X'(i) form a singular Jord-j 0 C

an chain of length qj corresponding t-, the eigenvalue K' = K of the singular

K'-matrix L'(A',,) A' + Bi& .

' (1~~C)x (1)anltci

i) There is a matrix valued function M.(C') of order q xqj analytic in

s(c') such that the identity (8.17) is valid. The matrix M'(r') is a Jordan
J

cell with the eigenvalue K'.
j*

Proof: Using the factorization in (8.5) and taking into account the fact that

the matrix (s 2I+C)-i depends analytically on K' in Q((K), we replace the projec-

tor P (1)(C) in (8.9) by an operator 0) (C') : ((K')) m stn given by
j jj

(8.Q8) Q()(4 F ,1.T+C, )-l- (

For rz' # 0 the operator Q W)(4') has the same image as the projector p( )(,).
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If r =0 but z' 0, both () and P (l(C) ae analytic, and it followsIfr= utz #0 bt j Pj,

as in the case z; # 0 that Im (1 W) We proceed as in lemma 3.4.

The operator in (8.18) is replaced by a new one, denoted by the same letter

(819) Q(1)() = (2i)-i F()D(,8,)(N(K )p(K')d'

jj

The matrix N'(K', ') is given as in (3.28), where X',w' and s' should be replaced

by a',0' and z' respectively and

(1)

N CK', ) = diag((K'-KI) q j  ,ii,..,l) .

The first column of the matrix D(a',B') is the singular root function (0(a',') and

is proportional for r 0 0 to the vector 0(a,$). According to (6.26)

FI(K)(Pj,8) = (K, ) so that the first column of the matrix FI(K)D(a',8') be-

longs to the space V( ) = Ker P( ), where = E'r. If r = 0, 0(O',a')

00(K',i ,) and

S1 (K) (P ,, ,) = F (1)(0(a',B')EF,(l)VcKerp(O).

For z' = 0 it follows then from the diagonal form, of N'(K', ') that

Im )( ,) c Ker P(). Let us define the matrix Y(K') as Y(X') in lemma 3.h.

The matrix X ()() is determined now by X)() = )(()) For

C; we have (I)

Xj '0 1 j 0'

where (1)

X!( ) = F,0, ... ,)T(K')d

1 31

so that X'( '), as claimed in part b) of the lemma, is a singular Jordan3 0

-- -.--
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ia~n generated by the root function P0(0',i at the point j' = K'. As in th.

(1)
.If'erential case q" J < (n-1)/2. According to assumption 1.2 and lemma 2.1

t co Lumns of X' (0' and therefore of' X ( c0 ) are independh-nt. Wt shall ctho.:

r ' ) ;mal! enough such that the colnic ol X ' ( are independent fo-r an:

' 4). Since image of' (j]) in (8.19) coincide:: w'th the one of 1'• ,-!

' 0 and ha( dimension it follows that the columns of X f or

Ssas;is of Im Q(4') for any To obtain the matrix MI) ( r') and !,ri
J

(8.17) we proceed as in the case z 0. The Jordan form of the matrix M'(r,

follows immediately from the definition of Y(K') and diagonal form of the matr[x

" ' 0

We are now ablo to hrirg the <-matrix ,(et) to a block form. In addition t

already defined matrices. X0 ( ), X_(,) and X] we determine matrix

Xk(4), k = 2,3,...,n, analytic in iQ(C ), the colurns o: wlilch form a ba.sis; of t .
0

mpace Im Yk(C). To the matrix X () corre.ponds; a .quare matrix Mk ans y1 ,

.rI S( 0) such that

C.20) A1 ()x k()Mk() + AI()Xk(4) 1,

,Jne -k = (ak+l)/(ak- ) is a simple root, the matrix Xk( 4) is artually a

&isenvector of the K-matrix L(K,4) and Mk(,)) : eK" We ;hall ()f'ten con: ider tIhe

matrices Xk () and Mpk(), k r e,2,3,.. n,,, a. functin of 4' iorouL -he re-

!!itlon in (8.2). Let us denote

FlI ' 2' . ' t , 1 ,x X ,...''Yn)
(.21 )

x (xx) x (x,x
F' 1 F1 P. - n

x Vl 1 x = ( P9 _
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n a neighbourhood Q(C;) with z' = 0 we partition additionally

X.22) =(X(I),X(2)), where X (1) = (X0 , X F l ,X -1), X (X2 ,X 3 ,...,X n ,X )

t igenvalues K k k = 2,3,... ,n, split up into two groups I and II, according

whether IKkl ' 1 or I~kI ' 1. In the case Re z; > 0 or z' = 0 we split in

S.anie way the eigenvalues , j 1,2,...,t, according to whether Re K < 0

1e K! 1 0. Then the matrix X is also partitioned as X,, (x, ,XT,X ). If
11F k ( ,' T I TT

:1 = 0 we suppose the matrices X and X to be partitioned

=+ ( ] X and X X "I We construct also a block matrix ,

corresponds to X and is partitioned according to XF with the similar
F 'F

, ations for the partial matrices. As usual, introduce the matrix

XFS A) X-. Tho r o* the inver c m,0.six T are val t iconed and denoted so

"' they correspond to the columns o1 X. lntroducingt the, matrices B0 and B

,.42) we rewrite the identitiec (,.i2), (8.1() and (8.2( 1)c'

1A., '0 X('-'' +

) and , i1. eorine-' ', wil ,h , ( . '.

t 1. f'irt. inv ;iva' ,he ar i .: Xt' and ' ' i .a:-

"'-l r' ). = rT-1  ' aT! ar , , ,- ar- rdirq ,.

M,reuov'r, tie+ ma4 
t'ir'es 2,',- ) -l ", ' r :' ' 1

mat r'cO Xf nx.' ' C,t, 0, : . , . " r- d ' ' ' T r. .4 0 it..-d

!-w

!" : .: ' t - ; W " V '11"' +" ' '. .L ' 
"

" + ;. - "' " "
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analytic in Q(C') and vanish on the spaces Im QO () and Im Q (C). Therefore we

Ket immediately that VFl = 0 and X0 ( 0 )v0 +X.( 0)v. = 0. According to part c)

,-,i' lemma 8.2 the columns of (X0 (40 ), X (C0 )) form a basis of' Ker A c Ker P(t),

(2)
and the columns of X (CO ) are independent of Ker (0). Hence v = 0, and the

matrix X(C O ) is invertible. We can choose Q(C;) small enough so that X(4' :is

nvertible for any 4'E1(4'). Let us fix any K with fef = 1. From !stability of

tie Cauchy problem we have for any 4'EQR( , an estimate

8.c) ) 1('(0 1 ~ (' = 11L (K,4) , z--

rince X(4') is invertible and E1 (') + K B( ') is bounded, it follows

-1 K -l Kr"at  "T(c') i - and IT -(4'). -- The matrix T (C') has a singu-

!rA.'i if the type jT(C')! -
. Since the matrix T(4') fo rvert, l, for r 0

'l IT(4')j 0 f r = 0, the matrix T-(4') may be writter; 'i'i fraction

I-t ') : 'y(4 ')/rk, where the matrix T 1') V analytisi. 2(t,). If the compon-

In 4' : (4'z' ,r)EiR(t,') i fixed and He z' h, thr natrix T (t') '-

!ei a.; r 0, and tht above fract ion i . roduc 11e. Thre!*ure t hi: fractior

;,lu'ibie for any I'EL2 ' nni rl >t,' V '

et r = 0. Ai,. in lemma 3. we i ave Im (c,) ..i., t, '. , 1n (8.,-l

(xed and di fferent from all tie eigenvaliie. uf I r,')+ -, ' ' r all

j' K' 1 If vEKer T(r,'), then I t,,X(t')(A )+K 4 ,' I)- n i rin

- + (,' ) a ; 'ai ft ; , ' C K'r t -, , 4 ;cOe th

" ,, , v-e i i jr. v ' i r, 'i r i a i I I . , r rlig t. ti '

matri : , ' '.0" -tr " x w, r :1,r .. , ' In

, , ( ,,
'  . i . . . r; - . ; 1 ro. . - 'r ,. A i ien-

,. ,, V .. : I k 0

k6
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ouince the columns of (0 ( xl)(4O)) form a basis of Ker 'A and the remaining
00' ), 0 \1(2)

:oiurns of X(C') are independent of Ker A, it follows that u Fl(') = u(2)=)

X 0 (C 0 )U 0 (CI ) + X (C0 )U( (,)

..ince the vectors 'po(K,0) for different K span the space Ker A , we may assume

that the last component of u W) is different from zero. The components

* ,( ') and v W) are given by VFi(4') (KI-MFI(4'))UrI(4') = 0 and

I Fl I
C' 2) (2)^I 2=

v* W (I-IM k o))U W) =0. Therefore (-( FI=(- 1)

:nd the matrices (T-( ) , (T- W))((2 ) are analytic in 0(4). Since

v11 (') = (I-KM ()( ))u (,) and the matrix M W(4) is a nilpotent Jordan

Cl)
, , we conclude that the last component e! v M 4') non-zero. Taking

' ' we obtain finally that the ia-t row of the matrix (i i

-zero, and the lemma is completely proved.

Let us now investigate the matrices X(4') and T 1(r') in the case z =.

mma 8.6. a) The matrix X(W') , non-cinguiar for z' # 0.

b) For 4' = (<,0,r)EH(4O) thie columno of X(4') belong to the space

,r' ( where 4 = 'r, and the column:; of X '4'( ,XT ',X ( as well

the columns of (X (W') ,X ]( )) form a : of Ker F(

(2)
c) The colun is of X (') are inidiendent of Ker J"(F,). Hence the matrix

,,( ')rX (c')) is of full rank n.

r) o uf: Part a) of the lemma follow:- a:- in lemma 8.5.

According to part b) of i-mma: .? and 8.% tn0 column:: of '( -(') l eIonr

r z' - 0 to the space Fer "Il). Port.%rmore the C0lrUTI:; of

X(1) , or( a) ,, = !' X )," w,(,re the;:7<4,'),X , (4')) form a bao>i: of" Ker-' A and ". 'F ) 1' (J' (Y), hr h
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matrix X,( 0) (X(4 ) ... .xtf 0' ) ) con:ists of singular Jorian chair of the

'-matrix L'(',40) =AK' + Bi . Let us partition the matrix X' (4') accordir,7

to the matrix X as X( ' (X' (' X' (')) Then the (n-1)/2 colu n;s
Fl 0 ) 0 1 )' 0

of X'(t 0 ) together with the vector o(1,0)EKer A form a basis of tLe (n+1)/
d-'mensional space V0. Therefore the coluririr of (,v ( ' (i) ( )

"t e 4 ' " ( ' o
o, basis of the space Ker "(0) = Ker A + F (i)V 0 . From the cons:iderution of or-.

a is replaed1 0*

tinuity the last statement remains true if is replaced by any

4' : ( ',0,r)EQ(4') and Ker "(0) by Ker P( ), where the neighbourhood 0(4') js
0 0

-;ufficiently small. In the same way one considers the matrix

(,), (2) 2( )ic, XII (c, W ))

The matrices M ( ) I, M () and M () are * jordan form and
I 0F 0 a 0

:O.erefore the columns of ,(( , 7i (' ' , )urdar.r. .ecence

K-matrix L( K n,) Te column: of X r. L ,-(2 tdnt

F' A o c-rarix ( Cl " 'ao.

s-oiiumns X (' ' 4idjnfn'c o.'urrXk '0 ... 0'

art c) of lemma . 2 the column.< of . . n ' .

.C the above eigenspaco. t'hen t; ' nove .e rda,

:rjquence is regular ana ience, according Co lemma 7.2, the vector' of the

11 (2) ( 2)
.'iuence are independent of Ker A. Hence the columns of X ( (X

0 F 0

(4')) are independent of the space Op X, (4 + Ker A = Ker P(0). Then pFY.

of the lemma follows from continuily of X((') and '() : functions of 4'.

ar,ma 'I0.7 a) The matrix T- (4') rzT I (r) and .... , the ,roru.;
(,) L ,,(1) )

, ( r and (T- ( ( ar, anal . i n c, i

Fl|
II 

C 
.....
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b) The last row of the matrix (T(1 ) is non-zero.
0

Proof: Since the matrix X(C') is singular, the proof used in lemma 8.5 for

the analyticity of T (C') is now unacceptable. Let us integrate the matrix

Xw)(,B0(')+I'-1T-(') for c'E0R(0') around the unit circle IKI = 1.

Since the integral (B(C') + KBl(I'))-ld< = In Otm-l)n, where the unit

M., we get from (8.23) an estimate

II ( X o X I ) -[ ( T -1 ) , T I ) K r <

where the variable 0' is omitted. The independence of the columns of X

implies that
K

-0 1 K

Let us fix in (8.23) a value of K bounded away from K I arid with I .

we get also

I (X X )[(KI-M )- $(I-KM ) J(T- ) (T ) iIIal Z _

and finally

F--:(8.24) 11 T_ (I A KTr~

,.t us note that the matrix T(o') is non-singular for 0'[0(0') when z'r 2.

Therefore the zeros of the function JT(0')j are also zeros of the function z'r,

,nd using, for example, the Nulistellensatz (see [9]) one can show that
k 1 k 2

r = (z'1  r 'p(r'), where the function p(r,') is analytic in Q(o ) and

'#) 0. Then the matrix-fun(ttion T-l( t ha: -incul ar tv of the type
-k1 -k, ,(Z-' -r Let us take r0' = (F0',z',r) C 0R(r',O withi Re z' C0 and fix

,, 1 0 C

.iv- •
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F' an3 z'. Representing an arbitrary element of T(W) as a fraction

' )/- ) kl r 2), where ')is analytic in we obtain from (8.2h) an

estimate k, k ,

< ') p$( ')/((z') -r K'lrz'/( zl-l) - K.

k2

Therefore 4(C') may be reduced by r for the above 4' and, therefore, for any

4'EF(4), Similarly, let us fix in C'€EQ(CO) the components 4' and r and let
R0

the variable z' be real and positive. Then from (8.25) follows that m(4') nay
k 2

be reduced by (z') for any C'EQ( 0) and therefore the matrix T '(W) is

analytic in 0(4'). Let us now prove that (T-= 0 for r = 0 and
- (2)

( t)) (2) = 0 if rz' = 0. The equality T(CI)T-i(4') rz'I implies that

Tn T (41) c Ker T(4') for rz' = 0. Let z' 0, r 0 and, therefore, C = C

According to part a) of lemma 8.6 the columns of (X(Fi!'(),X( ')) are ind-

erdent of the columns of (X0 (C0 ), X(l) (C)), which form the basis of Ker A.

'-idng vEKer T(4') and proceeding as in the proof of part b) of lemma 8.5 we

ies (ve that (1) = v(2) = 0 and therefore (T-I(' Fl = .eieta Fl F

now z' = 0 and r $ 0. According to lemma 8.6 the columns of X (W') are
_ipendent of the singular eigenspace Ker P() : () of the ,inFular

<-matrix L(K,C), where 4 = (4'.r,l). Taking vEKer T(r') and following the ana-

-1 (2) (_,I
lyticity proof of (T (4)) in lemma 7.6, we conclude that v n and there-

1 (2)= 1 (2

!Ore (T- ()) = 0. The matrix (T-l W)(2) is therefore divis ible by rz'

and (T-I('))F1 by r, so that part a) of the lemma is Trovd.

rn order to prove part b) of our lemma we shall construct a vector func-

!in v(r') analytic in Q(4') such that the last component of

0 I I . . i i i i . 1 &
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v (c') is non-zero and T(t')v(C') = 0(rz'). Then multiplying the last equal-
0

.,-on the left by T (C') we obtain that v(l,;) E Tm T-l').Let uc fix K dif-

ferent from all the eigenvalues of B (W) +K: l ,(C') for any c'EO(4). The vector
0 0

0 (K,0) E Ker A may be represented as a linear combination

P ( K , O ) = X o u ( % + X ( 1 ) ( )
0 ' 00 000 =

As in the proof of part b) of leimna 8.5, we may assume that the last component

of U I )( c') is non-zero. Let us define a vector u(4 )EC n by adding to u,(4; )0

and u l)() zeros in the remaining components. Then for Q' ( ',z'r)EQ( )
and the corresponding t = ( ,z), we arrive at

wh.ere ,p((!) is analytic in and for z' 0, Ap((')Ker . Since tle

columns of (Xo( '),X1 ()'),X (1)(V)) form for ,' = ( ',0,r) a basis of

Ker P(&), there exists a vector function Lu(C') analytic in ., ) such that

Au(2) ( ') = 0 and - X(1) ()6u(1)(W ) = O(z').

Therefore defining u((') = u(s) + rAu(C') we obtain

-,) X((')u(C') = 0(rz')

.. ,0ce(K,) = O(z-l) = 0(rz'), we obtain for the vector-function

v(r') = (Bo( ')+KBI(W'))u( ') an estimate

TW )v(C') = %L(K, )X( ')u( ') = O(rzl).
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To accomplish the proof we should note that the matrix I-KM)(c') is of upper

triangular form with the unit main diagonal. Since v ~l)(4 ) (I-KM(W)(4')).

I)( the last component o i(') (') is equal to the last one of u()

and, thus, it is non-zero. Q.E.D.

8.2. Construction of the Kreiss symmetrizer for the matrix M (+rM'(C!)

in the case ReK' = .

Let Re z' 0, z; 0 and suppose that the matrix M!(r') ias the eigenval-

R 0 
t

ue K! with Re Kt 0. According to lemma 8.3 we may assume that M!( 2) is aj j

Jordan cell of the order q(). For ease of notation we shall write q instead of

q(i Following Gustafsson et al (3] we consider a matrix

(8.26) M,(') = -(i/r)in M(.)(c') = -(i/r)kn(I + rM!( ')).

Obviously the matrix M'(C') is analytic in Q(;) and M!(C ) = -iM!(

is a Jordan cell with the real eigenvalue K! -iK'. The matrix X (W')
^

may be chosen in such a way that M(') has a form
j

e q-1 1 0 0

e - 0 1 0

(8.27) M3J) = K'1 + 1e0

j .1

e0  0 0

where ek = ek( '), k 0,1,...,q-l, depend analytically 4' and vanish at the
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point C'= C. Let CA Denote by p the number of the eigenvalues K of the

matrix M!l)(C ') with dKJ < 1. Since the K-matrix L(K,C') has no eigenvalues with

fKJ= 1 for C'Ef C;), it follos that the number p is independent of C'. It is

easy to show that the mapping K - K' = -(i/r) fn K transforms the eigenvalues

of M(l)(A) into the eigenvalues of M!(') so that for K with IKI < 1 we have

Im K' > 0 and vice versa. Thus, the matrix M'(') has P eigenvalues in the3

halfplane Im K' > 0 and q-p in the half plane Im K' < 0. Let us partition

the matrix X(l) as

.((i)(8.28) x.W = (x~ Xl)
SI'j' IT'j

where the matrix XlW consists of the first p columns of X(1) and X(1)

wi j an of the

remaining q-p ones. If v is a q-dimensional column-vector, we shall similarly

partition it as (1) ( )
(8.29) v(l) = (v ,v )'~ ~ I'olj '

where is now the transposition symbol. As in (3.16) we have a matrix

i(C,) continuous at the point C such that u 3 (') - I and

K 'j 0 0

(i)(),))-ij2)(Y,)uNl(j,) N J12
(8.30) (Uj ))-l M j1) 0

y. 0 N 22

0 K. j2

Here y = ir, and for C'EQR( ') the first p eigenvalues K.,Kp satisfy

K < 1 and remaining q-p ones have K I > 1, So that the spectra of the

lk

I NV"V
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matrices Nj I and NJ2 2  lie correspondingly inside and outside the unit circle

JK! = 1.

The main result of this subsection is

Theorem 8.1. There exists a Hermitian matrix R (t ) depending smoothly on

C'EQ(C;) and satisfying

(8.31) (1)*_()( (1) (1) 12 , (1) 2
vj j )j -cvi + Ii,j for any C'EQ( )

(8.32) (-() j (') 6( zl-l)I for any c'E%(C)

where 6 and c are positive constants and c may be chosen arbitrarily small.

We shall use the methods of Kreiss in [21 in order to construct the above

symmetrizer for the matrix iM'(t'), so that in addition to (8.31) the estimate

(8.33) , r

i(ir

holds for any 'EQR(4o). Then as in [3] one obtains for the matrix M(1)(W')
• j

xp(irM 3( ')) the estimate (8.32). Unfortunately the coefficients ek( ') in

(8.27) do not satisfy the condition of the Ralstols note [8]. For example,

ek(41) are not real for Izi = 1. The following lemma provides, however, the

necessary estimates for the imaginary part of e(').

Lemma 8.8. There is a neighbourhood 0 (') and positive constants K and 6

such that the estimates

(8.34) jlm ek (t')j :5 Kllm e0 (C')l, k = 1,....q-l

(8.35) Tm eaW)y > 6(1'.-I(+ r.3) jzj-l

hold for any 'Ef2 (C').
R
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Proof: We shall not take advantage of the specific form of our difference

approximation. What will be essential in our proof is the dissipativity of

the difference scheme.

For any complex r consider a mapping

(8.36) K' = p(K',r) = (exp(iK'r)-l)/r

The function (i',r) depends analytically on K' and r (including r = 0)

and the mapping K' - (p(K',r) is one-to-one for bounded K' and sufficiently

small r. Since M (W') = (M'(O),r), the mapping in (8.36) transforms the

roots of the equation =M'(')-'Il 0 into the roots of the equation

JM ( ')-K'Ij = 0. Denote L'(K',C') = L'(,p(K',r), '). Then the mapping in

(8.36) provides a one-to-one correspondence between the roots of the

equations IL'(', ')t 0 and IL'(K', ')I = 0. Si,,ce the equations

M ( ')-K'Ij =0 and IL'(K',C')I = 0 are equivalent in Q(K 3 ), it follows

that the equations IM'(C')-K'I = 0 and IL'(K', ')I = 0 are equivalent in a

neighbourhood Q(K) of the point <3. The matrix L'(K',V' is connected with

the amplification matrix G in (5.23) and is given by

'(K',C') = exp(iK'r)(z'I-G'(K',C',r))

where

, ,)= (G(K'.r,<'.r)-I)/r

(the factor exp(iK'r) = K is due to the fact that the original difference

operator L in (5.2) was multiplied later in (5.21) by the shift operator E ).x
The consistency of the difference approximation implies that

G'(', ,O)= -i(AK'+BV')
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Since K is real and I KI + 0# 0, the matrix AK! + BC has distinct eigen-

j
values and therefore the matrix G'(K', ',r) is diagonalizable for any

o' , 'r diag(g ' ......gn1

where g' g'(K',V'r)' k 1,2,...,n, depends analytically on K', C' and r.
' = k

In our characteristic case we may assume that gl(K',Y,0) 0 and therefore

gj(0,',r) = O(r). Since z 0, the equation IL'(K', ')j 0 for 'EQ(Q)

is equivalent to the following n-i equations

(8.37) z'-gk(jK',X',r) = 0 , k = 2,3, ... n

Since the values gK!~'C',0), 2 < k < n, are distinct, it follows that K' = K'
0

Ls a root of only one equation of the type (8.37), namely for such k, 2 k n,

which satisfies gK 3 ,E,0) = z We shall omit theindex k in this specific

function

'K ,r = '(K F,',r)

-k

and rewrite the corresponding equation (8.37) as

z- g' (K,',r) = 0

Let us denote by g(K, ',r) = l+rg'(K,E',r) the corres;ponding eigenvalue of the

amplification matrix G(K'.r, '.r). Then the last equation may be written in the

following equivalent form

^ , ) n z Rn g( , ',r)
p8 -8) f( .. r 0 (where z = l+rz')

V -i-
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The function f(K',t') is analytic in O(K')x(C). For c'EQ(C ) the characteristic

equation IM,(C')-K'II = 0 is equivalent in Q(c3) to equation (8.38). Since

IK 1 M l ~ i = (K - !) - ( ' --.. -eoK')

it follows that ±ek(C'), k=0,l,...,q-1, are coefficients of the Weierstrass poly-

nomial corresponding to the function f(K',C'). Define a function

where - is a symbol of complex conjugation. The function f(K',C') is analytic

in ,' but not in '. For C'E%(c ) we have

2(8.39) f(e', ')-f(, ') = [In(IzI )-in(g(K', ',r).g(K',C',r)]/(ir)

According to estimate (5.27) our difference scheme is dissipative of order 4.

Therefore for real K', ' and r there is an estimate

2 14
(84o 1 -6r4

provided JK'( + (F'I is bounded away from zero. Consider an analytic function

of the complex variables K',&' and r

and let us expand it in a power series according to r

h 1 + hi(K',')r.
i=l
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Let K',E' and r be real. Then h(K',t',r) =g(K', ',r)I 2  and it follows from

(8.40) that the first non-zero coefficient h.(K',E') should have an even index

i = 2m .< 4 and should be negative. Actually m = 2, since otherwise the scheme

would be dissipative of order less than 14. Therefore

h(K',i,r) 1 + O(r

also for complex ;'X2 and r. Let now K'EQ(K ) be complex and .( i

<' and r are real. Then

4
(8.41) g(K',&',r).g(K', ',r) = h(K', ',r) = 1+0(r

and

(8.42) o( .

It follows now from (8.39), (8.41) and (8.42) that

(8.43) If(K',C') - K( i- + r3)
r

and

(8.44) rf( - f(K" ) s Kr 3 .

Denote f (') = f(K , '). Then Im fo(c') = (f(K!,r')-F(Kj,,'))/(2i) and using

(8.39) and estimate (8.40) for real K' It we obtain
J

(8.45) jiM f( ')j 6( - + r
0 r

Therefore one can replace the right hand side; of estimates (8.43) and (8.44)

by KlIm f0(W')i
. Thus, the function f(K',r,') ;atisfie.; the conditions of lemma

8.9 proven below. The correspondence with the notations of the lemma is as

follows:

Z K' w = <'-, and I)



Since the functions 
±ek(4')' k 1,. .k q-l, are Qoetf i r n r of the WeierstrBr<

polynomial corresponding 
to f(w', ,'), we arrive accordknV 

to lemia 8.9 and esti-

mate (8.45) at the required e-th.atU; 
(8.Y4) and .. 35) Our proof iv valid for

any dissipative difference 
approximation. If the order of dissipativity 

i, iM

ins1tead of 4, one should 
replace rin (8.5) by r

it follows from (8.35) that Lyn (t,') ie of coristFnt sipn for ,'EO )"

As in [21 (lemma 2.1) we shall 
show that the number 

P of the eigenvalues 
of

W in the halfplane Im 
K> 0 is given by formula (3.14). 

Since this number

is independent of 
'E0 ( ), we shall take r' 

= 'z ,o) with Im z' 
= Im nd

Re z' > o. Such point 
does not belong to 

oR( Q, but ds a limit point of 
a set

Then ! Il en(t' 6ez.' and Px(c)

O(1 e z', k 
=  ,

"  -  TheK'efO.r " te 0 env, ues C of ihe matrix . (,'

may be written in a form

K= K + (e (,')) '.(0
-+O (Fe z')'

l )

and formula (3.14) follows 
easilY.

Using estimates (8.34) and (8.35) and formula (3.14) we are able to construct

te required symmetrizer 
F( ) for the matrix M'(4')- 

U:;inr the notations 
of

Kreiss in [23, the matrix iM'(4') is represented as

iM'(~j) ixK'* + jC + iF((4') N('~wh(re

0e e. 0j 0 .

' 0 1 0"-

0 . . . .
0
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0 .. ,a Since u (0) 0 it follows that urn s~l., ..

q-1 q-

61 j11, fo(w)u, where 61 is arbitrarily small if one sets E-, small enough. Let

write the integral expression for :m ci (w)

IM 04(w) = _f-' (~ z -. -)dz 1 + (

Z qf'(z ,w) q

The functions 1 - and - ar 1,Continuous on UxA ' and, hence,

f(z 1,w T(z 1,W) f(z 1,w W

the difference of their values at the points (z w) and (z,,0) may be bounded

by arbitrarily small constant if one chooses c 2 in a corresponding way. Let us

q

note that 1 is analytic function of z I and therefore

Z1,0) q

(f'(zlw) - '(z ,w)dz7 0

Z q*fl(zlo)

f(Z1,0).f(z 1 0) (0,C) 'l

a qTz10)

wnere ?(0,0) - is non-zero and )is analytic function.

- ~ z f ((zw)f, w)d q-1111 C (w)

f zi 90)T( ZI Io) 0Oo

N, w, u;np, estimates (8.146) and I . 7 wfu utta n for suilffio i enl ly smallI

Ir (W)



and therefore

1r, e (W) in, 1,(w)

for some constant 6 independent rf wEPPA'
w

6..Proof' of theoremsi 5.1-5.3 in the neighbourhiood

We consider first the cas3e iiu. The operator P in estiim-ate (6.9) is now

defined as P =A =diav(A.,A,. .. ,A). Theorem 5.3 is formulated now in a follow-

int, forn:

Oufficiency: If (P1(C) is satisfied in 2k)and dinm(,)e 1, estimate

(U.9) holds in 0kb ) with jz 0 j 1.

:ecesisity: If est'mate (6.9) holds, in l')withi I 0~ heeu 0,

,.hser, 7()i satis.fied in P(t' and im S(0,1) Ker A 1.

Theorem 5.P is replaced by stronger theorem '.3 arnd tlheor-nm 5.1 isforia-

iart~d lca.5l ly by means, of estAimate (1(. w ._A z, !+a,Ax and' 1 0

Let us consider the m.-ore comnlicatedl caseC lhej a .I:i the

var iables; V(X) = x ' )uix) ua x) - x i!- iv-LCn

tao 7.? at equati n.. (7. 45) . The (si(s-' I r' x e-,fl as-

-;,t,~~~~~~ Ymtie (o :oni.Arust ad as- a block di uigonai ial.. r Jx ,whre 4,

blcsare, denoted according- to the part it i n of the mal r Ix X(

W- i-fime R ( wc c) -55 ,wers a zma, pn:_ ti ve cun~tSarl an~i

ri .;ubsPct; on I.t. f- eY, J then 11 . ; ) = nd ft~ be( K
IjJ

/ I) -T The mrats so: I F k n,,.,a are def inedl >1iJ Ilv' aseci-

or_ I,-_ I T_ u ot h t 1,)r R# k nw:

_ anf

6k.1 I ff



= (1-( ,* I'JI ',) estmat

-2r r 0 sufficLently small. Since r z-lf > zf - 1, estimate (8.32) holds

for any j = 1,2,...,t. So the symnmetrizers R (c') and -9(c') satisfy for any

c', £ (r) the conditions

VFlRF(')V FIv 1 , v0 R0 (,)v 0 -criv0 12  v*R (')v.>lrI I

Ajplying to equations (7.45) the generalized energy method as in subsection 7.2

we arrive at an estimate

2".54) (" zI-1)1v11 2 + [IV (0)i2 (c) 2 + (1)

i ( ¢' )G il

K7- (2L

incc r(T , r(? 1 WI)) , > , )) and (T W))F! are analytic

*n i(Q), It follows that

II R( ')G(N . KiFI2 .

Analagously to lemma 7.7 we have

.,emma 8.10. The condition (UKC) in the neighbourhood P(r') is equivalent to'0
the condition det S([o)(Xo((;) , X ()) 0 .

Proof: Let us construct, a block diagonal matrix U (') with partial blocks de-

noted as in the matrix MF (r'). For k 2,3,...,n and j : I,?,...,t with

Ela



Re K' # 0 we set Uk and UI ). as unit matrices, and for Be K' = 0 the

matrix U (1)(C ' ) is defined as in (8.30).Tho-, U(W) =diag(U0,U l(W),U )

diag(UF(C'),U.),where U0 and U are unite matrices of corresponding order. The

matrix U(c') depends continuously on ' at the point c with the value U(C )=T

and U F( ') provides a similarity transformation

FlC 
) F ( ' U F 

2 W 1

For C'EQ,( - ) the spectra of the matrices Nl (c') and N 22(c) lie correspond-

ingly inside and outside the unit circle JKI = 1. Considering the homogeneous

equations (7.45) (A), (B) for F = 0 and performing a transfoimation v = U( ')y,

where the components of the vector y are partitioned according to v, we arrive

at the equations

Exy0 = 0

Nl N1

(8.55) ( - LK NJ K
kL-ME x )y = 0

Hence for 'EQ R (C) the general homogeneous solution of equations (8.55) in

92P(x) is given by

Y 1(x) = y.(x ) 0 for v 0 0, y 0 (x ) 0 for I z I and y (x ) = N 1 (c)y (u)

ond the corresponding homogeneous solution of equation (1.144) (A) is
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(8.56) ( = (pl(x , )... ,n(X ,c'))(Yo(O),y1 (O))'

X(W')U(')(Yo(x\),YI(x ),O)'.

The nm-dimensional vectors (j(O,4'), j = 1,2,.. .,n, are continuous functions..

of 4' at the point C ; Since the matrix X(4') is non-singular (we, actually,

use only the independence of columns X (C'),X (c')), it follows that the above
0 0I 0

vectors j(O,') are independent for any C'EQ(CI) and, thus, may be used for

the definition of the matrix N( ,z) in (5.30). So the matrix N( ,z) = N(4') de-

r.ends continuouslyon 4' at the point C' and N(C$) = (4o)(X0 (4),X1 (4)). The

condition (UKC) obviously implies that det N(C') 0. The converse is also

true if one takes Q(C0) small enough.

Let u return to the boundary condition 8.1.). If (IJKC) is fulfilled,we

have an estimate

(8.57) V0(O)j + Iv1(o)L K(Iv 1 (o + 2 12) + 2

Suppose that in addition dim S(0) Ker A = 1. For r = 0 the columns of

(1) ~A and hence the column of
(X0(O'),X_ W) )) span the space Ker adeneteoumsof F" 0 )X ( ),

depend linearly on ?( 0)Xo(4') 0. Then for any 4'E2(iO ) there is an estimate

Ivj(o)j 2 < K(Iv 1(0)12 + Iv(2)(o) 2 + Iv(l) mil + IF12 )

and therefore

(858 11 (0)1 2 (0)12 (0)I2+lv(2)(()Ij2+ ()()2+03.58) Iv I~ l + rlvoOl 0 K(tv Jo)2lv2(ol + rjv/i) o)12 + Ig12).

Choosing the constant c in (8.54) to be small enough, one derives from

(8.54) and (8.58):

2 2 (2)(O)12 () F'
6(lzl-l)1vlI +(IV ,(0)l +IV0  ()+rlv (0)1 +rlv (0)1' )Ax.1K(27.iL_ +

0. T, 71-
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Since ,u2 IXvII2  KV 2 and =X(r'f, AX (1r) O(r), we get the required

estimate for theorem 5.3:

2

(8.590) (Izi-1)ui 2 + 2 2
(8-9) 1zIl)1u11+ Au(0)I Ax - fi + Wg AX)

If only (UKC) is satisfied, it follows from (8.54 and (8.57) that

2 2 11 F 1 2 W1 2
(8.6o) (Izl-l)llvl 2 + jv(O)l Ax K( - -- -+ Ig Ax + Iv (o)2 Ax)

The value of v (0) is given by

(1)(1

V.i)(0) 1 (M )( '))"(T-l(c'))W lF(x )

V=O

since M (1 ') is a nilpotent Jordan cell of the order m-1. Therefore

KIFbI KIFbl2 r-I 2
Iv (0) " r z- we FbI F(xI

f I zo =1 + aoAx with a > 0, it follows for any Iz > 1Z.1 that

Ax K(IzI-a) 2 " zI-1zo '

and we arrive at the estimate

2 2 11 F 12 +IF bI 2 2

(8.61) (lzI-Izo0 )UIu2 + um(o)l Ax (I-,i1 IF2Ax)

which is obviously stronger than (,.8).

It remains only to prove the necessity part of theorem 5. . suppose that

(UKC) is not satisfied in Q(r'), i.e. det2(( )(Yo(t' ' X(n)) -. There

eoxiLts a non-zero vector (Yo(O),y 1 (O))' -such that

r . .....
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(S(XXo( )yo(O) + ×i( )y1 (o)) = 0.

Using the vector (yo(O), y1 (0)) we define by (8.56) a homogeneous solution

u(x) ' (x,C') of equation (7.44) (A). Then the vector g = g(4') in (7.44) depends

continuously on C' when CI - r; and g(,0,) = 0. Estimate (6.9) implies that

Ix(' )u(' )(yo(O),y 1 (0),0)'1 . Kjg( ' )(2

and hence AXI(q,)YI(0) = 0. Since the columns of X (n') are independent of the

space Ker A , it follows that y1 (0) = 0. Therefore y0 (0) 0 and ( )X0 ( ) = 0.

Since 1 and X0 depend analytically on r, it follows that S( )X0 ((,)Yo(0) =(')

0(r) and estimate (6.9) implies that

(O)j2 Kju(O)j2 K:us Kgr__ O(r

Fixing z, = z' + c with small positive c and defining z = 1 + rz' we obtain that

I z1-.1 rE. If r and Ax tend to zero in such a way that zI-IZ(J = z-l-10A ,r-fi,

we obtain that yo(O) = 0 and (UKC) follows.

in order to prove that dim S( O Ker A 1 let us assume 'jrot that Be zo.O.

Consider equations (7.45) for Q'€i((') with g = 0. Assume that the grid function
0

F(x) given in (7.44) vanishes for x with v -1 m. Since the matrix M F1W

partitioned into blocks M1 (¢) and Ml(r'),we may write for r 0:

m-l rn-I
-36)v1 1 V- )(T, Wri) [ (x ), v (0)= [ MC<t')(T-](t)) F(x( 5 .6 2 ) v 1 (O )= -  M _I (-1) ( 1' ) ) I F F v V - )

V=O V:OJ

'iis- vectors v[ (0) and v (0) are functions; of' ' and the values of v (0) and

',(C) may be found with the aid (>1 the boundary condition (8.51). We denote

:%,{') rv(O). Since the matrix P'(t')=rT-](t') is. analytic in i(r4) and

:IKCI i: satisfied, it f'ollows that "Is v( r",') I inulyt TI. -,11 analyti ty



of (T and (T_ (2') impl ies that v, ,0, r,) v (2 ((,C Wr).

Since the last row of 1 T(1 is nion-zero ant M Wn) ; a nilp'otent

Jordan cell, one can obtain any value of V.(( 0,) by. a ::iah hol e of

F(x). The vector v(0, J) satisfio LC ouoi' rdt,'

(8.6) >r)x (r')v, (0 )+ )X W~ )V (0 'C) + I(C.) c,
(863 0' O 0 + S 0 0 1 0

Suppose that v I(0 c;) 0 0. Since Au(O) =XK)(,')/r and AX I,'

O (r), it follows that

A 1 r

where 6 is a positive constant. Then th1 e e'stmmate

'22

implies that

Kr 2 0 for, any il :r "' ,

which, as shown in the above proof o ." a. f ' rad 'C-

ton means that V1(,~ and thO> yes-t ,.! r- st :-

11to mnce ) rth e crI'Iic 0" ti ' j. ' K-r A rinil

V" (0 r may accept irly vaUeI 1" fr ow h~'a f! i r A .

Ra 7 ~(0,X( we an fixan 7

Then there ips some nelphbourho-d .t( , n lmafr( it KId;

r)So we prove the, no'ce -r; it:/ part, of th-.)tem(, f()-1 , 1-1

let us now turn to the oas~ ) ~i -rtt

:.Iiouid he defined a.,; PWr,) I ((), wher,' ( '.r . iT.1 .

fo~rmulated locally in a nihAr( )n i' atwa; . v~
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the symmetrizer R(W') as in the case z' 0. Since there are no block, M with

Re K= 0, we may write r instead of IzI - 1 in (8.52). Therefore jzj - 1 in

(8.54) should be replaced by r, so that we obtain

(8.61*) iv (o)12+lv(2) 2 (1)(0) 2-(Ivv 22
(-. 6 T-I v ))0' -i (l( 1) -ll (1) T-1 (2)

Since rz'(T (cf) rz'(T W)) , z'(T (c')),l and (T are an

2 2 )
tic in 2C(;), it follows thatil R( ')G, < KjIjF 12/Iz'). Lemma 8.10 is now proved

easily since the matrix MF(') is partitioned into the blocks M ( ) and M i(').

We should only recall that the columns of the matrix (X 0 ( ), XY4r')) are inde-

pendent according to part (c) of lemma 8.6. If (UKC) i:3 sati:-fied, we have e!;ti-

mate (8.57), and if additionally dim S( 0)Ker A = i, aix.o (8..58 hold::. So in

the last case instead of (8.59) we obtain an estimate

(8.65) 2l + : -2 Ax I x

r r

which is obviously stronger than e.;timate (6.7) for I i' oi, IK i)

is satisfied, we get instead of' (8.60) an estimate

1112 + v(o)1 2Ax K+ g I' Ax + 1V 1,P

where

'"hen estimate (6.8) with IzfI I+a, Ax I f, w : s.i n 1h,- -- z (I .

In order to prove the suffjic-nj ar ths.,. %. , 1 u.- i r~l iduce

frid vector function; v(x) and ;(x) wh,:e i"orl ir-t: ; (nned ticrdnr

to v(x) and G(x) and are given by:

vc= rz'vo, fT, V,



and G(x) is expressed in terms of 1(x) in the i:a n way. Equatioi (.r5) (A),

() remain unchanged in the new variat.le;':

(A) (E - M (r'))v ,x ,

(1) (i - m ( I )E x)V (x) = , (X)

1"-ft u:c modify the former symmetrizer RC,') y charkrg_.Y h Fnd P from -cr1

and r to -cl and I respectively. Appiyjnv t( the abwjvf epuat o, tthe Weneral-

.zed energy method with the modified symmetrizer wk ,t i.nAt ,ad of (.(h) an

e,;t mate ^? I = o, 4 : o " . I': bItGi'
6 b( rlv] + [ , 2 I

V h.ce del i~4)X 0( Xl( )) $ 0, the vco v. a ; .' )aRye

n-at, functions uf v (0), V (0) &r V . 2' '.,' <.

I' I " = 0, the vector .,C, X ( , '..

,)Xo ' ), and therefore

1f z' = 0,thn by part . 2 ,'i..t . ' . r . "' -.

:" , a La, i.- of her El - ,, ,r , , ' . ' ' . , '. .

• ~ .r the rov '., , . . .

. . ...



I(O)12AX 2 QLJ + lg 2Ax)

7& t us note that according to part a) of lemma 8.7 it fullows that GK1

On the other hand

NO 0 w) )PwjNc,') 0 if rz' = 0 and P()x~ Fl W) -0 if z, 0,

it follows that !P(E)u(0)j , Kjv(0)j and therefore

I( )u(0)1 Ix F 1
< -l + t_ -A

The las-t result together with (8.65) gives us the estimate (.)

Suppose now that estimate (6.9) is satisf~ed in h )Witt,

and Iz0 I l+oAx ' 0. We shall show that (UKC) i s then f ul f i led., Otherw ise

"here exists a non-zero vector (v 0(0),V 1 (0)), Such that

00 1,

1jet v(x) he the soAution of equation,, (7.45,) (A) , (B) for F and r,'62~ tj

OorCcesponding to the above v 0(0), v 1 (0). Since the mati-ix MA( j s partitioned

00

0nt Wick M (~) an 1 4 ),I it, -u l w that 1< .h sriiri

ii II Z(iFA

the marix ( ~ ' ) (i th ' ) )are neidei )I' '(;( ' . 1')Xef
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follws tat v()() = 0. Let us estimate the term 11v(1 1 2. Since M(l)(tr
I(II

I + O(r), we have for any vector w an estimate IM W )p ,-(or)Jp Hence

1 112 6AxIv W (())1 2/r, and (8.6[,) implies that

(1) 2 2
IV1 (0)1 Kr~gw)l /(1zl-zO;).

2 _ 12 (r2
Let us set C' (F~ r, z'=r) with r > 0. Then jg(4')I _ ( "-,OI (

and Izl-lz 01 r -a Ax. When r and Ax tend to zero in such a way that

a0 AxI : r / 2, we obtain from the last estimate that v1  (0) = 0. It reriains,-

only to show that )x 0( ) 0. But the vector X0 (rC') depends; actually on r,

so that for j = (0,0,z'), X (c') =XO(( (Q). Taking s ome p~oint t'0~)with

Re z' > 0 and its neighbourhood (')cht) we prove as in the ca-se z' 0

T hat ( 0 )x 0 ( ) # 0.

Let us now fix a point (r,z'=0)EQ2((' with r -0(. Then thee r a

Muall neighbourhood ( 1 of the point =( -r , z=1) ::sch that fr' ot jj,'(,

'C

Soiuds, also for ~ ~ E2 ~)with I a I1. Ac-ord ogr to the l ocal. veriso 00 f

*h-orem 5.3 pruv-1 i ;ubiiect ion '(.2, we s-oriode that dim ~r)Ker 1'(

(n+ L/2 It foilsw then from the-, sorb iderat ion-s of continuity that

imi(,)Ker P((o) f(n+1)/2. fiu th (n+1)/' coliTn;~ ( ~, > i
dim 0 ''1 of' S, (

i -1Onig to ) Ker 1 ( O) and arc- ijedn aso urdijnp 1,C:, (1K(') . The re tore

dm(9)Kr "(0)= (ri+L)/P.

I remains, now to :show that,1 din a 9 1Kr A I1. ' oref w, rove, theorem y .

(5' al 1y , we (,an nAt rt fe r to t hercat's' ,'I where 1,wa:' set. isaIt A. How-

'x,' he proet' i, . smiLlar. Let, ii: isn rJ01 2 i* r 1 tl oc- i-1 T( x) vali :1. irirg

r, x mAx and 0, 0. TIhert tr'rrrsnin vi'AI'
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v ( () (2)() in (8.62) are of order U(i/z' O(ru;'), v(0() and v •',j ~d:

respectively. Therefore the vector v(0,c') = rz'v(0) depend- anai;.'1c,' y'n
(2)

€'EQ(C0) with vIT (0,c) = o(r) and v( (0,c' ) = u(rz'). tji .: .

5.2 is not satisfied. Choosing suitable F(x) one can assume that the vfctor

S(Co)X ( )v (CO ) in (8.63) is not proportional to ( ') and hence

v i(O, )  0O. lie have already proved that the columns of Ic')

form a basis of the space S\0) (Ker P"(0)). Since the vector

X i( ')v() belongs to Ker A c Ker %(0), it follows that v ,

We have an estimate (1) j2 1 ) F112
(1) 2 6Axlv (0) KI (T-( I U

I r 2
r

(8.69)
(1) o 12 , 1 1

6Axiv,___________ II2  %1Ax
rl 3, ,il - l -. i

Since the norms of the remaining components of v are of smailor order, itl

that lull2 > 2Ax . But the last estimate contradict'; the ertimalte
rlz-1l2

u K _l 2 for positive z. Thur:, theorem 5. i ciip , 1 .';r .

- -l)
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- 'K',.' =(K-l)s3in( F Ir/?-)/r, ,'='(K',, = iK ' rifl( /2)

L(K ~ Z K + ('(

',K' ,, i- considered t: a polIynomi al of ec'ddepree in C' with

ffcnts- depending on K',' The value,.- otf c,, in (92 ) are riven 'h,.

.9. kr r = O we obt a In

.4 C(',')=-AF,' + RiK, and L1'2) -'(C(',,)'2

.0> T'K' Z~') K hnz~0 it follow: ht L(''' ze '2)

~ (~~4) is a polynomial in K' depending analytically Orn

ii'' e c haracteri st ic equat ion fo-.r the,( K'-matr Ix T ' ( ' , . '' , A, er n'1

t mdeci and r is Small (SO that K -l+rK ' $ 0) , is equivalent to the equat i oi

K~' 0

.2matrix L' (K'' may be decompo .,_d a,,

are root,- of thc, qu td'atic 7 faiI

It ' and ,;' depend hnalyt ca!i. or K' andi u 0 nh

-Ioar that. In (F'V ano i>( -. . al I:ijw

ia t are that Im >'~ 0 tnd Ieor Inq U1 . l"O r z' ,

* arnd s are cont inuou!n fun' tit: j *0.0 and ' at t.he po inlt(



{ nd slk20) 0. According to formula (3.3)

Then using (9.6) and the fact that -2j = -'K we rotain for z' 0

P' const . p) (a',8 (a,

't follows from the continuity considerations that ('s) - also valid for

0 0. Thus, for C' = even in the case ,, equation (.5) may be

wr tter as

n0 the K'-polynornial p(-C,iK' ,s') is regular for any values of Ondno 0
in ynomial (w', ') is also regular in 4'. A., in statement 0.1 one can

w that for s' = 0 or Im s' # 0 the equation pO(- 4 0' '",', =) has (n-l)/

s ' with Re K' > 0 and the same number of roots with ihe e' k. There-

;>uro equation (9.B) has no imaginary roots K', and the c fficulties assoc-

aited with constructing the symetrizer in subsection 8.2 do not appear here.

['et K',K . ".',K' be the different roots of equation (9.8. witi mutipicities

t
t q , °.., It is clear that n-2. As in su sestion R. we

.,]ect small neighbourhoods 0(K3) of the points K = , and cir-
",iar contours f'1 C Pi(') bound-ng other neivhboruhoods Q(K). Tihen 'J,'

'.;et. small enough so that any root K' Of equation (9.5) belongs for

E',,o') to some 0 (K!). ?or any ,'E*') with z'r , we define as in 8.01

"' st[ijy orthogonal projectors



_ ( )

J
P 2T =-T (a)1 II K(~,)A(r)A1 ()

] {0

p (K) = (2Li1 (i(,c)) A ( )dK

KE0

ere as beforc is a contour around 0. For j = 1,2,...,t, we can write

(o~O) P,( ')J (2T i)-ir-i 0K€t()L(' )I0mInE< A ( )d K' -

- (~i)r K'EF' ')O(m-l)n -FJ(K I ~)K

- w unlike P )() in (8.9) each of' the projectors P.( ) has a singularity

th ,e tvrer even in the neighbourhood 0(r'] with z; . However, the pro-

Jectors P0(r) and P (;) have similar features as in Section 8.
e:sa 9.1 a) There exist matrix valued functions Y() and X (t) = (X!

S(C)) analytic in l(O) whose columns are independent for any EQ( O) and form

for z # 1 a basis of the spaces Im PO() and Im P.(c) respectively.

b) Xo([) is one column matrix and consists of the singular eigenvector ,p 0 (0,).

.-h columns of X ( ,z) form a singular Jordan chain of leng{th m-l correspond-

ing to the eigenvalue K = 0 of (L (K, ,i); this chain is generated by the

ligular i )ot function 0 )(, ) at the point K = 0.
STh columns of the matrix (X0(w ,z),X(1)(

S, x (7,z)) form a basis of the space

, where B = diag(B,B,...,P). The columns cf X(2) form a basis of the

,' Im d iag(0,O,B,B,. ..,) and are independent of the space Ker P(1).

There are matrix-valued functions M() z 0 and M (o) - M(] )( ( ) 2 )

":r;72ytic in (2(%O) satisfying the identities



7

+ r~ i)

A..,':r," (< + (r)x (o) =

and M ( ) is a Jordan matrix with eKgenvalue K = 0.

The proof is a word for word reyebltlon of the one used in lemma 8.2 and is,

cr-efore, omitted.

Consider now the projectots P.(Cj) in (9.10). As in (8.16) we define an

lperator j( ' ): ¢(i(<.t)) * n by

. (1' )2o = (2 i 1  F(,K)L' (K' ,,)-( 9(K )dK'

or rz' # 0 the images of (5') and P.(W') coincide. If z' 0, we can

. ' t e

S(2i)-i F(-1) + K ,c ) -

s," ( r + C' K' , -i (K' 'dK

The roots K' of equation (9.8) may be divided into two groups T and IiJ

sseording to whether Re K! > 0 or Re K! < 0. Each group consists of n-1 ele-

cents. Let FI be a contour in the halfplane Re K' > 0 surrounding all the

-nts of the group I and analogously the contour F,, in the half plane

cc K' < 0 surrounds the points of the group I. Define the projectors

- (2ir) + C'(K', I

FT
1 0

7T (K(Z" ((~) ' (K t ' )) HidK'
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and similarly ( , and P (2)

Suppose that 0 = 0, and hence C'(K, ;) BiK'. Then the imaoe of T1

spanned by the eigenvectors of the matrix B corresponding to its negative

(2)~genvalues and mIP ) is spanned by those eirenvectors which corresponding to
e 0

to the positive eigenvalues. Therefore we obtain a decomposition of the space

Tn in a direct sum

(9.5) Im p (1 ) s Im p(2)(C;) ( Ker B =

and similarly

m ) (1 ) e Im P(2)() Ker B =
o.]6 Im P(1) I (2

One can consider the projectors P in (9.14) as homogeneous functlons

,f zero order depending on free variables C' and s', where s in the expre-;

.ion for P is replaced by -sI. Let D be any compact linearly ronnected
2 

1
irin T consisting of points ( ' s' ) with real ~'and In s't andrldi

a point (O,s'). One can select the contours F and F rn uc1 a t1 -i no
I

root K' of the equation p (--,iKS -,i'-5, )  curl-

tours when (C ,sj)ED. Then the projectors I depend ana.(t1),(all, on

' ,",s)ED and, thus, equalities (9.15), (9.16) hold for all hut a finite num-

ncr of the fractions 0/s. 2ince for z' 0, Re z' > (J and real O the point
0 ' 0$

, 7,(i')) may be included in such domain D, it follws that (9 ]5A and (Q.lhI

nold for all, except possibly a finite number of the "raction: F''I ',U' Let

us now formulate

A:\i;,umption 9.1. Equalities (9.15), ().lC) hold for "my ,ont r' with real

nd Re z0 >0 O, Z; $ 0.

It may be easily verified that th;; a:; irrptir; :;t' i in t!e i ,.

-f, the acoustic equations. We siha]l, actiuaL-I,, n;i '. e " :umlt. ,
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study of the block structure of the matrix L(K, ) and only apply it in sub-

section 9.3 for the proof of theorems 5.1-5.3.

L~et K! be a root of the polyriomiils p0 ( i j (i)) arid ( 1K3(r

multiplicities (1) and si. resnuectively (only one of this multiplicities

May bI e zero). Define opcrators

( .l7 Q) C ()( ')P = (2;,i - I  'l ( ,' )i + C'( K , '))UP(K' )dK'

(9.182) ()( = (27i)-l FF((s(e',C')T + C'(K', '))- lP(K')dK '

lst u ; rewrite (9.17) in a form

,.i.) 7jT)(C,)w (Sni f [ ,K'SI + C'(K',, ')- 1 $(m-l)nlQ(K dK

.upposing that K = -I + K'r, we denote by L1I(K', ') the whole nmxnm mat-

rix in the last integral. For r 0 the matrix L(K,;) with K and t given

fly (Q.2) may be considered as a linear regular K'-matrix. Since the K'-matrix

is a right divisor of and has (1) eigenvalues K' in K

follows by remark 2.5 that

dim Im q(] (1)
' "J (I') = q.

T' image of Q(1)(C O) i s isomorphic to the image of the operator.j

p(K )*+ 2~)~Fs('2 <)T + C'('(' ))-lo( ')dK'

.l

Io ,a hrfr h dimens-ion (I Ji Hence , (Q9.,2 holds for ayr'E

"nl]iarly we have
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dim Im q() -

It. is clear that m Q. (1,) and In.Q (2) (C) belong to Im Qj('). 2u'bstituting

I.1e representation

,n (9.12) we conclude that

(1 () +(2

(q.22)Im j,'W) = Im W() ) + Im )

For r $ 0 the space Tm Q.(,') is of the dimension q. q(1 + q(2 ) and, hence,
j anhne

the above sum is direct. For Re K! > 0 we have inclusions
3

cF(-l) Im (1)( ;) Im Q (2)(c,) c F (-l)P2 (,). Therefore if

and (9.16) hold at the point C, the sum in (9.22) is direct for any
0'

( of sufficiently small neighbourhood Q(C;). It follows from (9.20)

<a', there exists an nxql) matrix Y(K') analytic in Q(') such that the

Snof the matrix ( ) = (Cl) (K orm a basis of the space

Im Q.(1),) for any C'EO( C;) Since the whole integrand in (9.17) being
3j0

:nuitiplied on the left by L(K,C) is analytic in 1(K') as a function of K',

wtO ohtain an identity

% W (I)
A I(,)Q i)( ')(KY( ')) + A 0(r)X (n') = 0 •

(),expressing (')(K''(')) = X(W()M (1)(C), where M. ( ') is analytic 'n

wo arrive at

A I(r)X (r,)(- ,+rm (r')) + A (W)  ( ) = 0(.

8cti 0.1 it may 1,( ;howri that. the matrix M , has the only



Pi-enva(ue K of multiplicity q. . Similarly, one can define the matrices,
J

JJ
X!2)((1) (2) MW))

) frth prtr([2(,.Dnt

M (D M M I + rM. X (X X

Then one can write

AI )X(X')M( ') + A()X(') = 0 .

As in previous sections denote

XF1 = (x1,x2,. .. , xt), XF (x0,xF), x (xi.x).

i)wing the division of the eigenvalues K' i 1,2 ,t, into the rPs, s, groups ... T ,n t the r .'

,nd I we relate the matrix X. to one of these groups. Then the matrix X

ipartitioned accordingly as (ix,XIT). Having the partition

S (1) 2) we obtain the corresponding partitions

(1) k2)) a d X = ((1) ( )
X, = (XI ,X1  ) and X11  (XIT ,"i

n a similar way define the matrices

MFI diag(M' iM' . m), I - I F  F

•r~1 their partitions

IA' (M'OM' 1) and M;,= (m 1 P

u:;uai 'i'( ' ) = (A (,)X, ') , A O( ) X ( I,' ) and the 1 ow:; of, ,!(, i tnver:,e matrix

are part t i oned and denoted accor(d i n: to the co umns of ( ,) Del'in-

ii F ( i') and B1 ( ') as in (7.I2) w, arrive at. the identity



r ....... - _

(9.23) :(KC)X(C') T(Q)( 0 + K 1cW))

For r j 0 the matrix L(K,C) is regular and therefore the matrices X(;')

and T( ) are invertible. For r = 0 we have

sp(1 ) (C)) = F (-l)Im P (I)

(2) (1) (2)
and similar formulas hold for X X i X I

(9.16) hold at the point ), the columns of the matrix (X (r;), X( W ,),(

independent and form a basis of the space F (-l)n + Ker B. Similarly the

columns of (X 0 (0) , X ) (C), X 1 (r)) form a basis of the same space. Then

we can represent X T(,') for ' (W',z',O)EQ(C0 ) as a linear combination

d .2 ) X I(W') = X (C,)C W(Q) + X ( )C<(",') + X(1) )C ( , )

where the matrices C I(r'), C (W) and C (' ) depend analytically on r.

Lemma 9.2. a) The matrices T r r(! W' F1 and r(T-](r' )

are analytic in 1(r').

r,) The last row of the matrix (T-(0)) is non-zero.

"roof: Suppose first that Re z' > 0 and equalit.es; (9.15), (9.16) are sati -
0

f'ied at the point r O . If Re K' > 0 let, us define a function

K (-+rK') ij +

i:'r' rthe ,rodu(t i s taken over i. < , i #j r > 0 the function



Oj(K,rj) depends analytically on K in the uma 1in

K - K' = (K+l)/r transforms the unit ,-icie lK 1019 tie circle

I K'-(i/r) = I/" in the half p)lane P. a:: *;. v ,i ,  that the

ntegrals ( ' ,' )dK' are uni formly bounded for E'Ell(t with r

Let ,'E 5  0) Stability of the Cauchy problem impi i . e;timate (q.213) for

any K with 1KJ = 1. Multiplying the matrix L (K,(,) by p1 (K,t') and inte-

grating with respect to K around the unit circle JKI = I we obtain

I K

3 '~v-l -13

of 'X,(n,) are independent, we get the estimate

i (T-(W')) 91 .< K/

A; in the proof of lemma 8.5 one can show that th matrix T ,ai; a inu-

l-arity of the type 1/r k and therefore the matrix r(T-(')) analytic

:n 5(4'). Suppose now that (9.15) and (9.16) do not held or Re z 0.

!n ii ') we can choose a point r'i ( 'z' ,0  with rf-al 'l ar'd 1A, z 1 Uu

Sr-tt (9.15) and (9.16) hold at . Then the matrix r(T- ')) i analytic i n

me neighbourhood Q( C!) C Q1(4,'). Cince the matrix T-I(4' ha in l( ' ) a

rirooilarity of the type i/r k , it follow;; that r(T- ')) i ar.ilytio al.otyp l r itfclow h r.
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If Re K' < 0 one should define pj(Kr') as

.io tha- the function K -, ( ,) is analytic in the unit disc JKJ - 1. Then

L•,efore we get the eztimate if(T-((, ) i . K/r and the aralyticity of

follows. For . 0 or . the function (,)') is defined

in the proof of lemma 7.6. We arrive then at an estimate

,ir ',L ana yticity of (T ( 0')) and (T(Q)) follows as before.

Let now r'E (t') with r = 0. We shall repeat the arguments used in

.ra ..5 in order to prove that (T-_j )) 0. Let u, fix in (9.23) a

K '" different from tie eigenvalue ; ul, + ) ( f') for all ,'EO( '.

"Cr' T - ,), then al:so vCer TC' and ferefor.

+0 ( ) ( i') v we havu X ,( FuCe Lr 0 e [ . 'Ku ,'um-

t.- n of the vectors u and v art sspo~ed to be part.t oned according to

umns of X r,' ). Let us recall that the col)uns of tlio matrix

>[ i{ %' )'X[ ,' ) helo ', t, tfe- it oe K'or B + j i - )(T , aid that the

.n. of X ( D '), which form a Car;' of th- iriage of d 3 i,0,Bj,. ..0

(2) (2)
, 1r.opnd4ent. of the at)cv . ric . ' r : an . l , v

= r' ri' '' n ' ' v- i ., , r':-< r. ' ) I

- , A m. . .
I.



Let us now prove the second part of the lemma. Denote X (') = r2 X -(').

Using (9.23) we can write

-_l 1~l~x-i(c, ) = ('o(')+KB (C,)) T (,')L(, )

where K is fixed as in (9.25). Since T- (c') is analytic, it follows that

.,n') too is analytic in S('). Let now r = 0. Since F1 (T-(4
, )2)

- 0, it follows from the block form of B0 (4') + KB(1') that also

- ))Fi = (i-i(,))(2) = If vEIm i(l W) then also vEKer X(4'), and
= (2 )  

(1 (1eoti ha 0 ) 0 + )
-;ince VFl = ) 0, we obtain that X (=)v 0 WlW)vl 0. But the col-

umn.s of (X '), X (i) W)) are independent, and hence v0 = V(1) = 0. So we have

=mown that X -(') = 0 for r = 0 and therefore rX- (I') is analytic in l(4'.

Lot us represent the singular eigenvector $0(Kr)"Ker B as a linear combination

1 , ,r 0(,1 0(~ (1) Wi,X) + (ar)u (Cn)n

w .,ore ' = (V',z',0) and, hence, X0 ( '), X(l) W do not depend on 4' and '.
00

,'*r,:e for different values of K the vectors (P0 (K,R) span the space Ker B, we

may .ume that the last component of u (') is non-zero. Let us define a vec-

wu( , ),)E mn by completing u (4') and u(M (rc) with zeros in the remaining corn-

00:,n n .. Then for C' = z( ' ,r)EQ(r, and F = -Cr we ,el.

(K, - , (4)11(4 r-Ap(4'

NA( ') i.s analytic in SQ( )' ). Th'n the vector t'uncti on

" • , . , , . . .. . . . . - 7 - -2 _ _ __ ,.



Au(,-') = rx-l 1, 0 a (: )

also analytic in Q(C) and defining U(r') = u(rl) + Au(W') we obtain

Let us denote

(B,

Then

T(= LKt.RP( ,t) ')(7-1) o(r 2 )

Multiplying the last equality on the left by T- ( ') we obtain that

%b -- I

v(' (T')

Let <' = ( ',z',O)EQ(C). Since (T-I(a')) - (Tl(<)(2) - 0, wF' conclude

0~
%F (  (,' : u( )(()2) T e

that also n)=  () - 0 ard ti-erefore U , 0. Then

the uniqueness of representation (Q.2d) implie! that (') u and

u_') It follows now that

Si rice the last component of u ( i i ;aon-zero and M iii a nilpoterit

r'Ian cell, we conclude that the la't comiont:nt of v_((') and, therefore,

!,h- last row of (T-(c )) ) are non-zrero. The lemma is proved.

. , Block structure of the K-matrix 1(1,j in a neighbourhood 0K) for .'
= i

'Pt K. be a root of the euatior. n (-z iWj z' -- MI) wit multijicty (,.

a i a root of equation (0.8) with doub]e multil-,icity ;1.. Thle matrix

". + BiK, ha:: a zero eini -erw of ., some moltild icil(,,-, p 1. As: In
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Zmma 3.4 there is a non-singular matrix D(K',') analytic in £2(i)xi2(c')

w ,;ch provides a similarity transformation

D D- (K',(')C'(K', ')D(K , ,  
'N

N

e

where the coeffcientsek e, (K'',') vaninIh at the loint e;,G'. ar d matrix

KI 'I,') is non-singular in 2(K!)xP( ¢0 We moy a:ume that the firt colum.n

of the matrix D(K',C') is the singular eigenvector p0 (a' ,' ). Denote the second

?oilumn of D(K', ') by t01(k',D ' ). It is clvious that the kernel of the matrix

.,' ) 2is two-dimensional and Qp!(K ,CO) is the second eifgenvector of this

.. x corresponding to the zero eigenvalue. Multiplying the matrix (N, (' ,' )

,','' (the function 9 is defined in .3) on the left by the matrix a it.

.ra .h and then by E2  diag(-(z'K ,,,...) we otain

e e, e . e -1

0 0 1

E I ,Z' ) : 0 r ) i '1 + .( + ((z')

,. :' ' ' r:,t, coi umn of the, mat ix I . .hlt 1 .n she matr x thu,

"f' ' t I'



I -e 3-e4~ 10-

0 -e 2  3-ep

E3 0 0)

00

-Jt get e e

0 1  +0 ~)+OZ)

E 3E 2 El k(Nos =~) 0 0 1 1 . (r

aanthe first column of the matrix O(r) is zero,.elc

321 (N ' X 0'

eraor ')in (9.12) 
by a new, one denoted 

by the same letter

-2Ti- 
F1(K)DlK,CMN (I\JO(KK 

' ) 
Ko_

in~~ (9.28) and(9.2) cicd n

Yrrz, o0 the images of, the operator- inQ*-ad . conid n

The newQ.(trat ) depends analytically on

.vethe dimension 2qj. Thienoeao

pA:;O note that the, expressions 
in the aboe two 

itgasbcm 
nltci

whn ulipied on the 
left by '(e 2 K s In 1 emma 34 we can 

writ,

0q

~ (c'-c' ~ (~'~ and C (K' 
r' Jc,4 
3 fK') ,



.e,, re f ') and f,(-') are invertible in Q(K') and r > 1 is an in ee.

' he oprator r ' may e Written as

.,,: c; ( ) p (2Tii)- F' (-I) D( ', ) KC 11 0 n-2 '
1 - r' 0 (K)' r

* 1 I the image of Q.(c') is s~panned by two linearly independent vectors

, i ) and F (-1)<0(K' ,[,' and has therefore the dimenf:-ion -q,. [n the

,aze of q. > I we should make an additional

,, on ).2. The image of the operator C.([,) in (9.29) has the alimenslion

us note that if the order n of the matrices A and B is equal to 3, then

- " = T :]  . 'that a: u r.,t n. ').1 4 - fulfi f ed.
" ((i! ) ( ! (o 

' )
Tr.I . a) There exi-t matrix valued function X. ') = (X1 !  ,X

ut, anal.tic in i,, 1 - g coi tlnn: form a .; of the imrlaoe o"

, ,.; ) for any <'E (c ( ,

' : the column: of C' elcn to Ker V (whesw E :-t,'r

, ']) F l(-i)i'(. ') where the C)1'.s . ' Y>C"..) i rm a ,-int-ular Jordan

1' ngt h q cnrres pondiznw t,) t.r. , - val e .' : - of th ,- i',ingular

-At' +

1 . a matr i x V11,1- fuat, o T! '. r r.. 1 . na lyt i t 2't. )

', te t ent ' ,-

. I *. v, ' ' . + ,'. , . ' t.. ,t' t - r ti' ,

21~
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l" matrix (2(r') is partitioned according to the partition of x (C'):

( -i' '12
M 0 ( ' ). (A <

- j 22

. ,.' .. ' =' = .

:.nce dim. Ir r,11(W') for r'O(C ) with rz' 0 O and for
2 01

d ime-.ion of Tm Q.(4') is constant for all points 4' of sufficiently small

UK' IC cushood 24<0) and the image of Q.(4') depends analytically on

t ' t'e ressctdon of .') on the space of vector functions

= 0I', wei Q 1',K') is a scalar function. For z' = we

( ) (2T - - ( K(1) )d '

i )(PO(a', ') F (K ,POS B) = 0(,4) C Ker P(4)

=0
' 'e>,) P O(r ' , & ') = II ( - )w 00( ' ,8 ' ) C F ] ' - ) 0 c K e ( )

0 the image of (4') to......to her P(4). Sucstitutfnv for

q-i
' '( ' -e' s et v ly the fu'nctiors) F (-, - f K

. and applying the operator 0 (4 ) we obtain the I colimns of

. . .( , ' ,' , .
,

• - • . .. . : .. .- z - - I I I ' I4 -- ( 0 " ' .. . - ..

~~1



£ ~a p-Wi' W a the(_ poi'nt K' = K'. Therefore the columins cf

L'(/r , hen ce. those of X< W are ndepondlent . if Lu)' i, small enough,

- - lu xs of X .( Kwill be independent for any 'l) 'and form a basis

C' (r, for z = 0. One can add to t.hese columns, Ater qon.es which de-

-nI' s iaily o n 4in o'd -r t o f'ar im , bais o f t he ' _d inre ns i o n al sp;ac e

Weshlldrnotie t! .Q nsx . mti ta -os asained by >.')and par-

tx r,,,. may e. a sumned th1 at X (

K' = (I) (cI),t \)) is' an nxfq. ,iatrix analytic inl QCc!). The

Msx!(' is t~~en defined b y ther- eq;ual ity X. jjC 4)e) .(,')A c

the 2ase "'~0, one can sihow that ide-ntity <.0 i atisfied

ya -1 ( r~ )hste o'i !v eg ri.e n ~vl K I u 2l r, e 2 ' ((K' K')

Kand for 0 the colum.ns of X1 c~ fo rm a basis ofte

it) ri lows that 1! C'" for Z' = 0.

ma;sh mos ()X Xj,,) and X (')=Y()defined in lemmra 9.1

0the whole_!( "nrmn matrix

raftas; in 'h e ca; '' CWeadtoal jartit-Innta
c ') (

!1. od.. oT1(, u

hL-1



arc: '.y' e at, CdenIt Lt y (2.2) hr r thC' K-matriX LK,) iOs rei-u-

,,he rr.atr cei X ( r anid T(K~ are lnveart i te.

_________a) For- z' =C the Xoum: (I) (r' t eiong to the Space Ker (

-~~'v, and th Ioun ,tK~h ) , ' (')) as well as those

X 'u-T! lus IS f (el i), U)

wU , r:Qj withent r- 0 anid r-eal' the co]lmns. of X (1)

ind'!e' 'ident- of the sy-Pa(e herP

___The Cirst part of *,he lemma is proved exactly as7 part b) of lemma 8.6.

on to the s econd pat of the I emmra. ---x a noinl. C,

T,.1 ' anrd ri 0 and do ,t TT- I -, 7T 12U 1=) In subt,-ec-

n iave ,nve.-:ti ated the block, tr';-ctiure Of the' K-matrix L K ,)in

.D~~uCroQod (> oftiac por t n T avoid confusion we denote the

~.:(~ :'C.O~~u" nythe cirt:-

C2 4, ..uf f cient-s'.a 1 thilath correspo'Tndlng- po nt

iid'. i 'c -a' tw r~au i- :ur.'ounded tvy the c ant ours I'

aOL s .t;,:n':roT. L-iace the corresy end ing eigen-

I . , ,wne'~~ (t~,z' r1 K (Q do not cro s

A '0I11I0: K, w 1, ttl r 7 1 ,, 1, u .1 . et u: n(t t ihat any matrix

i.1 tha th

r7< re

'' I'rf' &



t-: the* -rlcu- I ir i

Y r *n,- ' li a e o de ,L

LV., - .'1~I5 V the C~itc j rt F h

-r,' to K r T( o (CIch

.~±. V., I.> rF)-.c at) = .

n -IulLir th

50t F = c-s- nE O% C i11= , 9
"f0 ~ r .To



r and 11 r z rTz

and~ ).i ar0 u2z C' l

i :51. onen of :11' V0/K we aS. b r t sdi 11r an a7!, in lemma S/ thatov

Us * 2 and Sitnce lthS(I,' er (C) and h owr; ofX ;' are

'yr r

4.........'-rfoe aels the- mtrix n-)L, analyt ic in11 n

-new prove th', ,,econd ,(art (1f, the lemmua. As i n Ia ea . 1it may 1be

> 9 1 ir 1 qi 13j1 1 ow r;-

Eti ci m4 I ot n If

4'r



AM'~j is analytic in 124)and for z' 0, AW(C' )EKer Mrw- fnc tht

lmn- of ( x"K ' x (c',XI (r form for z' 0 a ba : of Ker 1l),

**~<a vector function Au(c') analyvr(c ir. 1(r!) sch tat

AU ~(' 0 and NP(r' X x io )A>)(4C' z' A C~')

is' analytic in Q.(4Q T!en the func t on iAu( X) .(' (rz'AV.4')

mffai-tic in Q24) and defiAnn i(4 r, u(r ')+ r, u(4' +A0(4 C we have

q6,(K,q XQQQ)>' ). itroducIr& v(;') (I ) + 3b ((, )4' ) we get from.

' ')ij rc ul Ii I("thc matrix (4) ' 2ti ana.:"

* ~ ha.V( !) I r T )' for rz' 1 0 and itiore- tar :E!:.-

1 -On ty' t'. .low thiat t!' la!" CG~UT:ient oft v 1:o::.1..o~

-.- ()van iL.To "W t' ' arn, K 01 T 0. n c

X- -ml tn m IWV Tm 2"Oo1

al, I r

1 'M Y. X I
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Since all the n+m-l columns of the matrix (X (1-), x W)(1) bln
0e 1(~)x Y)bln

fr r 0 to the n+m-l dimensional space KrB + Fi(_l),n, they also form a

Kisof this space if C' is close enough to C . Therefore representation (9.24)

is till valid for the points 4' =,z

int the case n 3 it may be~ ,howrn that assumption 9.3 is fulfilled. We can

prove lemmas 9.3-9.5 without u irig a-,,umpt ion 9.2. Then only part a) of

irlema 9.3 should be reformulated so that the columns of' (c') span the space

a ~4')for any 4'EQ2(4') and are independent for r $ 0. Thus, assumptions

.-Y3 are connected with the boundary value problem and its stability and not

the block structure of the K-mat-rix

Proof of theorem;; .1- in ta'< neighbourhood Q(C;).

We consider first the case' 0. The operator P1 in estimate (6.9) is de-

roias P = B =d Tr(L. ,...,P), Theorem 5 is formulated now in the following

e.noccy: 'If KIK.C) i.: attoli. i27Iand din. P 1,L Ke' BL= 1,eimt

n 0

In ','(I,) 7 4 (UUK) ti stsfe in i ')arnd

)Kf7)

p rr . .r .[at ry 1. sron k e r t heo rem 5 an d theo)r em i

toi1,;d i qot tji' nn '. 4 h

Vtrf>r X) X (r h)11 dIX) T-' p)P (X) wt, arri V- at ednua-

4 ttc nt''O I tji f.13' (o hould Le written int the, form

a t- I -pp : r,



-ci when, Re K' > e2 ar(i Hij hr ee i
'3j

rice

Re R (C )M'.(' -61 arid I'3 -i+r.N!((),

t follows that

M~(WF.(WM.(t)-F.rj) 6 rI

sufficiently small r > 0. -lhen thie symrmetrizers anRp,) aif

1"')I any C~EQ R (c') the conditions

(21)M*(C')R (,-) W) ) (r') 6r r
F F F

(V )v . v-crv.v R,,( v.r ~rV

Arp plying to equations (7.Lih) (A) , (1,) the pxenerah ized ener(gy method as in, .-uL.ec-

'n we arrive at an estimate

.. J 6r 11V 11 2 LI Iiv +

is note thiat [JI, I = .' e Vc r1 5. m

int u etimate-

t~o r~n~ii icin , r

to the end~sir~ it 2~r.; ; '



n 1blocks M (;)and M w c ') tiL ~i1o~ nt~nrgfrr t 9~

mans KI I and IK I .;csi& -'ueaot~ FstL:l

.;ss- umptioni 9. 1) that the column.: X ' re 1 nde}, enderit

Consider the boundary coni t ion (. )C u iIIc

an estimate

Iv (0)! + Iv,(d 0) K' , v_' + i

:C adtitiornally dim S(0%) IFer B, h w ta nstecin83Io' n

58%) and rewrite it here:

V 0 2 +rlv(V 1 :5Y K ) jO) + IV ()Oo) +rI) I +A

lluo. i ng then the conL-tant c in .. sffi ciently smnall we otbtalrnr':

trl (9.37) an estimate

L"i rnull 2 + (IV l()1 + IV )I+ rlV (0)I + r I v(IpH)i

uminj-' that vo(0) and v 1 ()ar L i rear furnct ionj uf v Ue

.equation (.1,we may cons jee rr air 4o, e vector 1Bu,'-'"

* rear fuinctio!n of r', v.,, (0 ) itrl V w)2ef r'i~ Le

lairm t hat there i:-i-an o -'t miii

B+~ Iv ,( l

u)urh tcshow tha Ve (( 3  .TruA.alfi

.1 r~~~~~~in ;n~ the i' ' :* ,r'., - OI : 'd o t

mu'! h written a a 1 I ln',t -.t ,!



u(O) = X ( wt ) + X . + '

', )u(O) = g 0, we otbta r, that

( 0)X1 (r,')w, = ..k( jY ( Lw , x(i) (¢')w -\I

{! c,, + Y I

c r the columns of X ( r K,,1 ( y ) X. an I
'L

ace Kei" B and according to condition ".I the right hand side of the la;d equa I-

,t: is proportional to the vector i x(t0  (C). SInce det S(r.)(xr(r' X (( /
D < 0 0 'i

.t follows that w 0. Hence the vector u(0) belonkrs to Ker B and pu(0,) =0

Using (9.38) and (9.39) we obtain thne estimate

1 0 1Ax < K( I )x + v (' ( 0) 'A x+ 11iF i /r

q,'value of v()() is riven by
(2)m-

-40) v () C, ()) ) (P- '))(2 )F'(x

v=0

I, c the norm of (T ( ') b) i- hounded t:,, F/r, the r AK' )'Ax-

2 2
by KI(F( /r , and we arrive at an estlmate

IBu(0) Ax K( Ax + 11 11

.. :F the last ej;t mate and "(. 8) m 1-1 by i, we 'A tain

1r -)u) + u Ax K + Ii1'1

17, " .. .e I ... V II r i I U..

= ' : Thl ; we have p.ov'U'.. i' 'I "'I' 'v '(. f! i, 'Mn' .

.ws,!'f/c I nti I;r"L! j . 'I !



(q.42) r uI1 + u(O)12 x K(v I Ax + IgI Ax + IFI 2/r%

The value of v ( ) (0) is given by

(9.4 3) v() N
=  Wc,' )) ( ~ (T) F(x

and satisfies an inequalit"

4() IV //I-

L"fnce r Izi-I., we set fro: ( . a .

L )I-iI ui~ (1 i K + + NI

71erl for I z I z- ,1 1 + a Ax wit! -, + tIe

r > lzj-1 I Ii a Ax and ier(, Ay.'

Ih[ -'[ fore estimate (9.45) is t t , 0Mlmr i ''" .{.

Let us now prove the neces ui it art ,.!f tho, pea . <it ( '.

rnot satisfied in ( 1 and thiercore tlere xi '.:t:.u nn,-:.,p> vi'

V(O),v (0))' such that,

"v (j)

r' ing with the aid of v,(v .;o] i

" !, ,I (A ) w, e oi-, t .. .. . =' ;l i

,~~ F , v



w:e re 91 9 gC. ~ (x 0( )v,((JU + x )vjU),otat( )

Since'B X( 0 and, as it follow: from as,;umption 1, the Column.- r:f

are independent of Ker B, we conclude that v ( 0) 2and h~ene

= ),,O r.t was assumed, however, that S( )( .Teeore

0 and (SheC) i: proved.
Teprooif o" cncitior 5.1 r e 1eat.; aImo- t e xac tIy the one u:-sed i n ru Iet ion

f.~:or the cazse ! U.We indicate only -the differences'. The vectcr f!.nct ion

v,t)j') is defined a: r 2v(0) instead of rv(O) and T-1 2~ T- 1~) Since

(I-- IW) anod (r'r 1 (C' )) L',are analytic, we obtain as before that

,,j) (~r, ) r~ Uppo"--e that v1 (Ojo) in (.) :non-zero.

...en ',,u(O) BX( ' )Jv(,~ r)/r , and n.-tead of the est imate cu() 6!/r we

reta

)r~ an.- 7I 7- L4cxXAx a.iU r /Ax . et ii: *A'f--e c, -v ' ani
L+r' z' I f r and AX tter I t( sCL aL Wa:thaI:t P e 7' ~ (AX , w

0

~~h.rn tht a-.. (K/ .) U ') U In

The 1-t-t o



If eEstim,,ate (6.9) holds, in ic7)w-ih 2 = -xoAx, where (i

tri the columns- of the matrix x( ,j!nd ~ (~, oehe oendans t'. r

UKC s;at isfied inA(~ c' hi ( r:SO L..

7 sF y-3r fr ch cb I. r

Deli ni ng the symmets rzer R( as n t he case $9we arr ive ai: Lefore

ot -m estimate (9.35). Now the norms; of the matrices r(TK WHO1 ), r(TV ('

\T F'Ij and (T1( W (? are bounded by K/rz and

As n the case z~ 0 one can :A o'' tha.. (Vhf" out'ise:ivi! ' o

ndt ion det 0(C T( ~ k('I - mrlr f 3c : o 9iic est

1. a: efore the est imate (v36). S 1 fadO t n3. nly cocii i on 5.1 at 3f ed

.e 1Cestimate .31 ibr > ?> o' ~ w~o~~

f' r repl1aced by i/s' '.

u +

4 . . . co-nt, mate (.)with ~ v mrii :5 0

N4ow assume that only (FK' ''3i1>I ' rt

.,-id replace 11Fil /r I'l j :': i 5. I r" b

lz' Vr).Theei ritr, I

i+olAx 1 folio,

'F e n w hno r ; t, !.C. 1 ,

m1'-ay c r 1 (1,r ,ie ()r i'' F r ,' . .. 'L '



of g, v1 i(O) and v (0) with coefficients, anajytic in n e C , n

--timate holds

(9.147) rz'v0 (0)1 + Iz'v T (o)T + Ivr (o)

() 2 (i) \- (2 )(y + V:))I2 +

K(Irz'v ( ) + (z'v1 (+)Z2 + 'vTT + V' C0)! I )

In order to prove (9.47) it is enough to show that

(,. 4 8) vi(0) = 0 if r v1 !(7J v g

and

v2 (0) = 0 if z' = v( ) = V K3 (2

T'hen indeed

(o)) ( * , '

vI  0) = ("v ,,v" (0", r.v

(2); ( (i 1v '  .

I( 0) = o, V V ,,

estimate (0.47) follow. The ' ( fLow:' fror, a .

.?spose now that the conditifj O (i.n . a ' ii. Then

0 = 2( c)u(0) = s(;Ix ( ~,v.(h> + :':, (" ' o + <: ' 2 ;v L'(,

+ x ' ) T"+

+ o
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According to parts b) of lemmas 9.1 and 9.3, the columns of

(Xo(W'), ()W),X(1)(C')) belong to the space Ker P(O). Condition (5.2)

and (UKC) imply that the (n+l)/2 columns of the matrix S( )(X0(i'), 0 (1) ))
form a basis of the space S(4)(Ker I()).Therefore the vector "(C)u(0) may be

represented as a linear combination

S(O)u(o) = S()Xo(W)wo + '(O)x 1)(')w (1l) + S()x (2) ')v( (0) 0
0I

where w0 is a scalar and (1) is a (n-l)/2 dimensional column vector.whr 0  1s (a (2)a ndw

Then (UKC) implies that w. =(i) (20) = 0 and estimate (9.47) is proved.

Also the vector ( )u(o) may be considered as a linear function of

g, viI (0) and v (0). We shall show that

(9.50) 1 ()uo 2 2 (K(Igl +lvi2)(0) 2rv (2) 2+2rz v(1) 2

Indeed, if g = v (2)) = 0 and r = 0, we get as in the case z 0 that

u(O) = 0. But for r = 0, Ker K(e) = e ) Ker 'B and hence (&)u(O) = 0.

Suppose now that the conditions in (9.49) are fulfilled. Then, according to

(9.47), V 2)(0) = 0 and

u(0) = Xo( ')vo(0) + (1) ,I (10) + ()')v (1 )EKer ().

Let us return to equations (7.45) (A), (B) and introduce grid functions

v(x) and G(x) whose components are partitioned according to v(x) and G(x)

and given by:

l r zv(l), v(2) (2) -(2) (2)
0 zv 0 OD) 00 F Fl VFl vFl 00,
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and G(x) is expressed in terms of G(x) in the same way. The matrices M ( ') in

(9.31) should be replaced by

M ill z M12

M' /Zi M1
j21z j22

According to part d) of lemma 9.3, the matrix M 2 1 /z' is analytic in

Let us denote M = -I+rM, MF = diag(Mo,M1 ,...,Mt). Then equations (7.45) (A),

(B) become

(A) (Ex-(MF ('))vF(x) = F(x;

(9.-51)

(B) (I-M.(')Ex).(x)= G.(x)

Let us note that the matrices M3 (V') have the same eigenvalues as M5 (t'). There-

fore there are symmetrizers R (') such that

and J12 ~Re R (V)M '(W ) -61> c ^ 2and

vj j( I if Re Kj < 0 and vj )vj V if Re Kc > 0.

Then for sufficiently small r > 0 we obtain

M *(C,)R ')M (;') - Rj( ') , 6r1 •

Defining

R0(c') = -cI, R ( ') = I, RF(F') = diag(Ro(;'),Rl(C'),...,Rt(;'))

we obtain for ;'ESI(q) the estimates (9.33) with MF replaced by MFand instead

of (9.34) we have

Nome.



- 189 -

vFHF( ')vF > -c(;vI12+Iv012) + IvI 2  *() C

Applying to equations (9.51) (A), (B) the generalized energy method with the
symmetrizers RF(W') and Rm(i') we arrive at estimate (8.67). It follows from

-1
definition of G(x) and the estimates concerning the rows of T-(ct) that

IOGII < KIIFII ./r . Estimate (9.17) may be written in a form

(9.52) (v 0 (0)1
2 + Iv1(o)2 K(12(0)i2 + IV(0)I 2

Then choosing the constant c in (8.67) small enough and substituting (9.52) in

(8.67) we conclude that 22 F1+ 2 2

Then estimate (9.50) implies that

(4)U(O)I 2 Ax $ KJOFF+ 1g) 2'x + (2) 2 + irz'v( ) 02 )AX

From (9.40) and (9.43) one derives that v2)(O) and (1) 2

VCo Ax an lrz'v Go(0)1 Ax are

bounded by KUF 2/r 2 . Thereforev(O 122+F + .g2X
IN&MO~l AX Ar lgI 2Ax) j K.1L_

Using the last estimate together with (9.46) we obtain finally

2.2 fFII2  2Ax
(+z l? ( )u(°)I 2Ax < K(.NF_ + Ig )

Thus we have proved estimate (6.9) with IZol = 1.

It remains only to prove the necessity part of theorem 5.3. First let us

show that (UKC) is satisfied. We proceed as in subsection 8.3 in the case z0  .

Sup)osing that there exists a non-zero vector (v0(o),v (0))' such that

'IL
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()(X0'lv0(0) + XI( ')v (0)) = g( ') and g(c;) = 0

we arrive at estimate (8.68) which implies that

2j~ Kjg(CI)i 2

where vII(0) = v(0) = 0. Since ?IrX () = 0 and, according to assump-

tion 9.3 the columns of X (2)() are independent of Ker(w), it follows that
v I I

v (2) (0) = 0. Therefore (C )X ( O)v0 (O) + XAQ6v (1) (0)) =0. However, we

have assumed that the columns of (c0)(X0 (C),XAL)) are independent. Hence
( 1) v 0 10

v0 (0) = v1 l (0) = 0 and (UKC) follows. Conditions 5.1 and 5.2 are proved in the

same way as in subsection 8.3. The only difference is that estimate (8.69) holds
now for all the components of v1 .
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10. Discussion.

In Part Il we have investigated a specific difference approximation applied

to a very restricted class of mixed initial-boundary value problems with charac-

teristic boundary, while in Part I for the differential case a much wider class

of problems was resolved. The question arises: how may this investigation be gen-

eralized?

First let us describe the main obstacles which one encounters in the analysis

of a multidimensional difference approximation in the non-characteristic case.

We suppose that the K-matrix L(K, ,z) associated with the difference scheme is

regular for any complex z, 1z1 l,and real 0 s 27 and has no infinite

eigenvalues. Since the work of Gustafsson, Kreiss at al [3] appeared, there seems

to be a general acceptance of the idea that the stability theory for the multi-

dimensional case possesses no difficulties, which are not encountered in the one-

dimensional case. Let us analyse carefully the theory in (3]. There are two main

problems resolved: the first is the block or normal form of thenatrix M(z) proved

in their Theorems 9.1 and 9.3, and the second consists of the construction of a

symmetrizer in Lemma 13.1 for a perturbed Jordan cell in strictly non-dissipat-

ive case. The matrix M(z) is obtained from L(K,z) by linearization L(K,z)
A0 (z) + 1(z) and then M(z) = (Al(z)) Ao(z). Suppose that Jz~l = 1 and there

are eigenvalues of L(c,z0 ) with IKI = 1. Theorem 9.1 claims that under Assump-

tions 5.2 and 5.3 there exists an analytic transformation T(z) such that

T(z)M(z)T-l(z) has the block form diag(M1 ,M2,., M t) in (9.2) with the matrices

M (z) as in (9.3)-(9.5). If we recall, for example, the matrix L(K,E,z) corres-

ponding to the Burstein difference scheme, then for = w this matrix is diag-

onalizable and thus satisfies Assumption 5.3. However, when & is perturbed,

the matrix L(K,E,z) ceases to be diagonalizable and therefore the block form in

Theorem 9.1 may not be maintained. Next, Theorem 9.3 claims that if M (zo)=K11,

where JZ0 = Ijil 1, and 11(Mz-)- l Klzl/(Izl l) for any (zf > 1 and

K = 1, then there is a transformation T (z) analytic in a neighbourhood of

.. _ j
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z z0 such that

T 1(z)M (z)Tj(z) = diag(L (z),NW(z))

with
lzl(Lj(z)Lj z-I) < -6(jzjl)I ,izl(N*(z)N (z)-1) >, 6(jzj-1)I.

This theorem is entirely "one parametric", i.e. if M depends on more parameters,

say z and &, then the theorem does not hold any more. Actually, in order

to get an appropriate block form for the matrix M(E,z) near the point (%oZo),

one should provide an additioaal parametrization of z-z0 and E-E0 as we have

done in Sections 8 and 9. However the success of such parametrization can not

be guaranteed.

Now let us analyse the construction of the symmetrizer in Lemma 13.1.

Because of the strict non-dissipativity, the double-sided resolvent condition

(13.6) holds and the existence of the symmetrizer follows easily by Ralston's

note. However, in multidimensional case such a symmetrizer should be constructed

also for dissipative schemes when the resolvent condition (13.6) is not valid.

Our theorem 8.1 in subsection 8.2 actually solves this problem.

Suppose that L(K,&,z) corresponds to a dissipative difference scheme (Burs-

tein scheme is not completely dissipative, e.g. at = ri). Then the eigenvalues

1 K) = 1 are possible only when z = 1, E = 0 and = 1. The investigation of

the block structure performed by us in subsection 8.1 may be applied to a general

dissipative difference scheme. Thus, together with our theorem 8.1 it provides

a complete solution (in the terms of the uniform Kreiss condition) for the stabi-

lity of a dissipative difference approximation applied to strictly hyperbolic

problems with non-characteristic boundary.

If the boundary is characteristic, in addition to the difficulties des-

cribed above, one faces the perturbation problem for a singular K-matrix. There

is no general theory for this case. However, the following uniform singularity

condition for the K-matrix L(K, ,z) seems to be essential: if the determinant

jL(K,&,Z)j_ 0 for some E0  and zo, then there is some analytic line z = f( ),

0 s , S P7, with z0 = f( .) such that the determinant vanishes identically
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along this line. For example, the Friedrichs type schemes or the original Lax-

Wendroff scheme do not satisfy this condition even in the case IAa+BSl E 0,

and because of that the corresponding K-matrices do not have an analytic block

structure. The saue problem arises with the Burstein difference approximation

in the case I-SbI+Aa+BBI = 0 where b = const # 0 - this is, for example,

the case of the shallow water equations with matrices

A= 00 , B= b
A 0 b

However, the leap-frog scheme in this case possesses no difficulties. Although

it is hard to develop a general stability theory in the characteristic case, the

methods used in this work may be applied to any difference scheme with corres-

ponding matrix L(K,&,z) being a polynomial of some linear combination aA+OB and

satisfying the uniform singularity condition.

Ij
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